MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncvsm1 Structured version   Visualization version   GIF version

Theorem ncvsm1 23441
Description: The norm of the opposite of a vector. (Contributed by NM, 28-Nov-2006.) (Revised by AV, 8-Oct-2021.)
Hypotheses
Ref Expression
ncvsprp.v 𝑉 = (Base‘𝑊)
ncvsprp.n 𝑁 = (norm‘𝑊)
ncvsprp.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
ncvsm1 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁‘(-1 · 𝐴)) = (𝑁𝐴))

Proof of Theorem ncvsm1
StepHypRef Expression
1 simpl 483 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → 𝑊 ∈ (NrmVec ∩ ℂVec))
2 elin 4090 . . . . 5 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec))
3 id 22 . . . . . . 7 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec)
43cvsclm 23413 . . . . . 6 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod)
5 eqid 2795 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
6 eqid 2795 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
75, 6clmneg1 23369 . . . . . 6 (𝑊 ∈ ℂMod → -1 ∈ (Base‘(Scalar‘𝑊)))
84, 7syl 17 . . . . 5 (𝑊 ∈ ℂVec → -1 ∈ (Base‘(Scalar‘𝑊)))
92, 8simplbiim 505 . . . 4 (𝑊 ∈ (NrmVec ∩ ℂVec) → -1 ∈ (Base‘(Scalar‘𝑊)))
109adantr 481 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → -1 ∈ (Base‘(Scalar‘𝑊)))
11 simpr 485 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → 𝐴𝑉)
12 ncvsprp.v . . . 4 𝑉 = (Base‘𝑊)
13 ncvsprp.n . . . 4 𝑁 = (norm‘𝑊)
14 ncvsprp.s . . . 4 · = ( ·𝑠𝑊)
1512, 13, 14, 5, 6ncvsprp 23439 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ -1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴𝑉) → (𝑁‘(-1 · 𝐴)) = ((abs‘-1) · (𝑁𝐴)))
161, 10, 11, 15syl3anc 1364 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁‘(-1 · 𝐴)) = ((abs‘-1) · (𝑁𝐴)))
17 ax-1cn 10441 . . . . . 6 1 ∈ ℂ
1817absnegi 14594 . . . . 5 (abs‘-1) = (abs‘1)
19 abs1 14491 . . . . 5 (abs‘1) = 1
2018, 19eqtri 2819 . . . 4 (abs‘-1) = 1
2120oveq1i 7026 . . 3 ((abs‘-1) · (𝑁𝐴)) = (1 · (𝑁𝐴))
22 nvcnlm 22988 . . . . . . . . 9 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
23 nlmngp 22969 . . . . . . . . 9 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
2422, 23syl 17 . . . . . . . 8 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp)
2524adantr 481 . . . . . . 7 ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec) → 𝑊 ∈ NrmGrp)
262, 25sylbi 218 . . . . . 6 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ NrmGrp)
2712, 13nmcl 22908 . . . . . 6 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
2826, 27sylan 580 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
2928recnd 10515 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℂ)
3029mulid2d 10505 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (1 · (𝑁𝐴)) = (𝑁𝐴))
3121, 30syl5eq 2843 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → ((abs‘-1) · (𝑁𝐴)) = (𝑁𝐴))
3216, 31eqtrd 2831 1 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁‘(-1 · 𝐴)) = (𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wcel 2081  cin 3858  cfv 6225  (class class class)co 7016  cr 10382  1c1 10384   · cmul 10388  -cneg 10718  abscabs 14427  Basecbs 16312  Scalarcsca 16397   ·𝑠 cvsca 16398  normcnm 22869  NrmGrpcngp 22870  NrmModcnlm 22873  NrmVeccnvc 22874  ℂModcclm 23349  ℂVecccvs 23410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-sup 8752  df-inf 8753  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-fz 12743  df-seq 13220  df-exp 13280  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-0g 16544  df-topgen 16546  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-grp 17864  df-minusg 17865  df-mulg 17982  df-subg 18030  df-cmn 18635  df-mgp 18930  df-ur 18942  df-ring 18989  df-cring 18990  df-subrg 19223  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-xms 22613  df-ms 22614  df-nm 22875  df-ngp 22876  df-nlm 22879  df-nvc 22880  df-clm 23350  df-cvs 23411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator