MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncvsm1 Structured version   Visualization version   GIF version

Theorem ncvsm1 24316
Description: The norm of the opposite of a vector. (Contributed by NM, 28-Nov-2006.) (Revised by AV, 8-Oct-2021.)
Hypotheses
Ref Expression
ncvsprp.v 𝑉 = (Base‘𝑊)
ncvsprp.n 𝑁 = (norm‘𝑊)
ncvsprp.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
ncvsm1 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁‘(-1 · 𝐴)) = (𝑁𝐴))

Proof of Theorem ncvsm1
StepHypRef Expression
1 simpl 483 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → 𝑊 ∈ (NrmVec ∩ ℂVec))
2 elin 3908 . . . . 5 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec))
3 id 22 . . . . . . 7 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec)
43cvsclm 24287 . . . . . 6 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod)
5 eqid 2740 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
6 eqid 2740 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
75, 6clmneg1 24243 . . . . . 6 (𝑊 ∈ ℂMod → -1 ∈ (Base‘(Scalar‘𝑊)))
84, 7syl 17 . . . . 5 (𝑊 ∈ ℂVec → -1 ∈ (Base‘(Scalar‘𝑊)))
92, 8simplbiim 505 . . . 4 (𝑊 ∈ (NrmVec ∩ ℂVec) → -1 ∈ (Base‘(Scalar‘𝑊)))
109adantr 481 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → -1 ∈ (Base‘(Scalar‘𝑊)))
11 simpr 485 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → 𝐴𝑉)
12 ncvsprp.v . . . 4 𝑉 = (Base‘𝑊)
13 ncvsprp.n . . . 4 𝑁 = (norm‘𝑊)
14 ncvsprp.s . . . 4 · = ( ·𝑠𝑊)
1512, 13, 14, 5, 6ncvsprp 24314 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ -1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴𝑉) → (𝑁‘(-1 · 𝐴)) = ((abs‘-1) · (𝑁𝐴)))
161, 10, 11, 15syl3anc 1370 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁‘(-1 · 𝐴)) = ((abs‘-1) · (𝑁𝐴)))
17 ax-1cn 10930 . . . . . 6 1 ∈ ℂ
1817absnegi 15110 . . . . 5 (abs‘-1) = (abs‘1)
19 abs1 15007 . . . . 5 (abs‘1) = 1
2018, 19eqtri 2768 . . . 4 (abs‘-1) = 1
2120oveq1i 7281 . . 3 ((abs‘-1) · (𝑁𝐴)) = (1 · (𝑁𝐴))
22 nvcnlm 23858 . . . . . . . . 9 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
23 nlmngp 23839 . . . . . . . . 9 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
2422, 23syl 17 . . . . . . . 8 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp)
2524adantr 481 . . . . . . 7 ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec) → 𝑊 ∈ NrmGrp)
262, 25sylbi 216 . . . . . 6 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ NrmGrp)
2712, 13nmcl 23770 . . . . . 6 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
2826, 27sylan 580 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
2928recnd 11004 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℂ)
3029mulid2d 10994 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (1 · (𝑁𝐴)) = (𝑁𝐴))
3121, 30eqtrid 2792 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → ((abs‘-1) · (𝑁𝐴)) = (𝑁𝐴))
3216, 31eqtrd 2780 1 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁‘(-1 · 𝐴)) = (𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  cin 3891  cfv 6432  (class class class)co 7271  cr 10871  1c1 10873   · cmul 10877  -cneg 11206  abscabs 14943  Basecbs 16910  Scalarcsca 16963   ·𝑠 cvsca 16964  normcnm 23730  NrmGrpcngp 23731  NrmModcnlm 23734  NrmVeccnvc 23735  ℂModcclm 24223  ℂVecccvs 24284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951  ax-mulf 10952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-fz 13239  df-seq 13720  df-exp 13781  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-0g 17150  df-topgen 17152  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-grp 18578  df-minusg 18579  df-mulg 18699  df-subg 18750  df-cmn 19386  df-mgp 19719  df-ur 19736  df-ring 19783  df-cring 19784  df-subrg 20020  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-xms 23471  df-ms 23472  df-nm 23736  df-ngp 23737  df-nlm 23740  df-nvc 23741  df-clm 24224  df-cvs 24285
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator