MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncvsm1 Structured version   Visualization version   GIF version

Theorem ncvsm1 25202
Description: The norm of the opposite of a vector. (Contributed by NM, 28-Nov-2006.) (Revised by AV, 8-Oct-2021.)
Hypotheses
Ref Expression
ncvsprp.v 𝑉 = (Base‘𝑊)
ncvsprp.n 𝑁 = (norm‘𝑊)
ncvsprp.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
ncvsm1 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁‘(-1 · 𝐴)) = (𝑁𝐴))

Proof of Theorem ncvsm1
StepHypRef Expression
1 simpl 482 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → 𝑊 ∈ (NrmVec ∩ ℂVec))
2 elin 3979 . . . . 5 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec))
3 id 22 . . . . . . 7 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec)
43cvsclm 25173 . . . . . 6 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod)
5 eqid 2735 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
6 eqid 2735 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
75, 6clmneg1 25129 . . . . . 6 (𝑊 ∈ ℂMod → -1 ∈ (Base‘(Scalar‘𝑊)))
84, 7syl 17 . . . . 5 (𝑊 ∈ ℂVec → -1 ∈ (Base‘(Scalar‘𝑊)))
92, 8simplbiim 504 . . . 4 (𝑊 ∈ (NrmVec ∩ ℂVec) → -1 ∈ (Base‘(Scalar‘𝑊)))
109adantr 480 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → -1 ∈ (Base‘(Scalar‘𝑊)))
11 simpr 484 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → 𝐴𝑉)
12 ncvsprp.v . . . 4 𝑉 = (Base‘𝑊)
13 ncvsprp.n . . . 4 𝑁 = (norm‘𝑊)
14 ncvsprp.s . . . 4 · = ( ·𝑠𝑊)
1512, 13, 14, 5, 6ncvsprp 25200 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ -1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴𝑉) → (𝑁‘(-1 · 𝐴)) = ((abs‘-1) · (𝑁𝐴)))
161, 10, 11, 15syl3anc 1370 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁‘(-1 · 𝐴)) = ((abs‘-1) · (𝑁𝐴)))
17 ax-1cn 11211 . . . . . 6 1 ∈ ℂ
1817absnegi 15436 . . . . 5 (abs‘-1) = (abs‘1)
19 abs1 15333 . . . . 5 (abs‘1) = 1
2018, 19eqtri 2763 . . . 4 (abs‘-1) = 1
2120oveq1i 7441 . . 3 ((abs‘-1) · (𝑁𝐴)) = (1 · (𝑁𝐴))
22 nvcnlm 24733 . . . . . . . . 9 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
23 nlmngp 24714 . . . . . . . . 9 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
2422, 23syl 17 . . . . . . . 8 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp)
2524adantr 480 . . . . . . 7 ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec) → 𝑊 ∈ NrmGrp)
262, 25sylbi 217 . . . . . 6 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ NrmGrp)
2712, 13nmcl 24645 . . . . . 6 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
2826, 27sylan 580 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
2928recnd 11287 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℂ)
3029mullidd 11277 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (1 · (𝑁𝐴)) = (𝑁𝐴))
3121, 30eqtrid 2787 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → ((abs‘-1) · (𝑁𝐴)) = (𝑁𝐴))
3216, 31eqtrd 2775 1 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁‘(-1 · 𝐴)) = (𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cin 3962  cfv 6563  (class class class)co 7431  cr 11152  1c1 11154   · cmul 11158  -cneg 11491  abscabs 15270  Basecbs 17245  Scalarcsca 17301   ·𝑠 cvsca 17302  normcnm 24605  NrmGrpcngp 24606  NrmModcnlm 24609  NrmVeccnvc 24610  ℂModcclm 25109  ℂVecccvs 25170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-topgen 17490  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-mulg 19099  df-subg 19154  df-cmn 19815  df-mgp 20153  df-ur 20200  df-ring 20253  df-cring 20254  df-subrg 20587  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-xms 24346  df-ms 24347  df-nm 24611  df-ngp 24612  df-nlm 24615  df-nvc 24616  df-clm 25110  df-cvs 25171
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator