![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ncvsm1 | Structured version Visualization version GIF version |
Description: The norm of the opposite of a vector. (Contributed by NM, 28-Nov-2006.) (Revised by AV, 8-Oct-2021.) |
Ref | Expression |
---|---|
ncvsprp.v | β’ π = (Baseβπ) |
ncvsprp.n | β’ π = (normβπ) |
ncvsprp.s | β’ Β· = ( Β·π βπ) |
Ref | Expression |
---|---|
ncvsm1 | β’ ((π β (NrmVec β© βVec) β§ π΄ β π) β (πβ(-1 Β· π΄)) = (πβπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . 3 β’ ((π β (NrmVec β© βVec) β§ π΄ β π) β π β (NrmVec β© βVec)) | |
2 | elin 3965 | . . . . 5 β’ (π β (NrmVec β© βVec) β (π β NrmVec β§ π β βVec)) | |
3 | id 22 | . . . . . . 7 β’ (π β βVec β π β βVec) | |
4 | 3 | cvsclm 24875 | . . . . . 6 β’ (π β βVec β π β βMod) |
5 | eqid 2730 | . . . . . . 7 β’ (Scalarβπ) = (Scalarβπ) | |
6 | eqid 2730 | . . . . . . 7 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
7 | 5, 6 | clmneg1 24831 | . . . . . 6 β’ (π β βMod β -1 β (Baseβ(Scalarβπ))) |
8 | 4, 7 | syl 17 | . . . . 5 β’ (π β βVec β -1 β (Baseβ(Scalarβπ))) |
9 | 2, 8 | simplbiim 503 | . . . 4 β’ (π β (NrmVec β© βVec) β -1 β (Baseβ(Scalarβπ))) |
10 | 9 | adantr 479 | . . 3 β’ ((π β (NrmVec β© βVec) β§ π΄ β π) β -1 β (Baseβ(Scalarβπ))) |
11 | simpr 483 | . . 3 β’ ((π β (NrmVec β© βVec) β§ π΄ β π) β π΄ β π) | |
12 | ncvsprp.v | . . . 4 β’ π = (Baseβπ) | |
13 | ncvsprp.n | . . . 4 β’ π = (normβπ) | |
14 | ncvsprp.s | . . . 4 β’ Β· = ( Β·π βπ) | |
15 | 12, 13, 14, 5, 6 | ncvsprp 24902 | . . 3 β’ ((π β (NrmVec β© βVec) β§ -1 β (Baseβ(Scalarβπ)) β§ π΄ β π) β (πβ(-1 Β· π΄)) = ((absβ-1) Β· (πβπ΄))) |
16 | 1, 10, 11, 15 | syl3anc 1369 | . 2 β’ ((π β (NrmVec β© βVec) β§ π΄ β π) β (πβ(-1 Β· π΄)) = ((absβ-1) Β· (πβπ΄))) |
17 | ax-1cn 11172 | . . . . . 6 β’ 1 β β | |
18 | 17 | absnegi 15353 | . . . . 5 β’ (absβ-1) = (absβ1) |
19 | abs1 15250 | . . . . 5 β’ (absβ1) = 1 | |
20 | 18, 19 | eqtri 2758 | . . . 4 β’ (absβ-1) = 1 |
21 | 20 | oveq1i 7423 | . . 3 β’ ((absβ-1) Β· (πβπ΄)) = (1 Β· (πβπ΄)) |
22 | nvcnlm 24435 | . . . . . . . . 9 β’ (π β NrmVec β π β NrmMod) | |
23 | nlmngp 24416 | . . . . . . . . 9 β’ (π β NrmMod β π β NrmGrp) | |
24 | 22, 23 | syl 17 | . . . . . . . 8 β’ (π β NrmVec β π β NrmGrp) |
25 | 24 | adantr 479 | . . . . . . 7 β’ ((π β NrmVec β§ π β βVec) β π β NrmGrp) |
26 | 2, 25 | sylbi 216 | . . . . . 6 β’ (π β (NrmVec β© βVec) β π β NrmGrp) |
27 | 12, 13 | nmcl 24347 | . . . . . 6 β’ ((π β NrmGrp β§ π΄ β π) β (πβπ΄) β β) |
28 | 26, 27 | sylan 578 | . . . . 5 β’ ((π β (NrmVec β© βVec) β§ π΄ β π) β (πβπ΄) β β) |
29 | 28 | recnd 11248 | . . . 4 β’ ((π β (NrmVec β© βVec) β§ π΄ β π) β (πβπ΄) β β) |
30 | 29 | mullidd 11238 | . . 3 β’ ((π β (NrmVec β© βVec) β§ π΄ β π) β (1 Β· (πβπ΄)) = (πβπ΄)) |
31 | 21, 30 | eqtrid 2782 | . 2 β’ ((π β (NrmVec β© βVec) β§ π΄ β π) β ((absβ-1) Β· (πβπ΄)) = (πβπ΄)) |
32 | 16, 31 | eqtrd 2770 | 1 β’ ((π β (NrmVec β© βVec) β§ π΄ β π) β (πβ(-1 Β· π΄)) = (πβπ΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 β© cin 3948 βcfv 6544 (class class class)co 7413 βcr 11113 1c1 11115 Β· cmul 11119 -cneg 11451 abscabs 15187 Basecbs 17150 Scalarcsca 17206 Β·π cvsca 17207 normcnm 24307 NrmGrpcngp 24308 NrmModcnlm 24311 NrmVeccnvc 24312 βModcclm 24811 βVecccvs 24872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 ax-addf 11193 ax-mulf 11194 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-sup 9441 df-inf 9442 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-7 12286 df-8 12287 df-9 12288 df-n0 12479 df-z 12565 df-dec 12684 df-uz 12829 df-q 12939 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-fz 13491 df-seq 13973 df-exp 14034 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-starv 17218 df-tset 17222 df-ple 17223 df-ds 17225 df-unif 17226 df-0g 17393 df-topgen 17395 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18860 df-minusg 18861 df-mulg 18989 df-subg 19041 df-cmn 19693 df-mgp 20031 df-ur 20078 df-ring 20131 df-cring 20132 df-subrg 20461 df-psmet 21138 df-xmet 21139 df-met 21140 df-bl 21141 df-mopn 21142 df-cnfld 21147 df-top 22618 df-topon 22635 df-topsp 22657 df-bases 22671 df-xms 24048 df-ms 24049 df-nm 24313 df-ngp 24314 df-nlm 24317 df-nvc 24318 df-clm 24812 df-cvs 24873 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |