MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncvsm1 Structured version   Visualization version   GIF version

Theorem ncvsm1 24005
Description: The norm of the opposite of a vector. (Contributed by NM, 28-Nov-2006.) (Revised by AV, 8-Oct-2021.)
Hypotheses
Ref Expression
ncvsprp.v 𝑉 = (Base‘𝑊)
ncvsprp.n 𝑁 = (norm‘𝑊)
ncvsprp.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
ncvsm1 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁‘(-1 · 𝐴)) = (𝑁𝐴))

Proof of Theorem ncvsm1
StepHypRef Expression
1 simpl 486 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → 𝑊 ∈ (NrmVec ∩ ℂVec))
2 elin 3869 . . . . 5 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec))
3 id 22 . . . . . . 7 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec)
43cvsclm 23977 . . . . . 6 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod)
5 eqid 2736 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
6 eqid 2736 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
75, 6clmneg1 23933 . . . . . 6 (𝑊 ∈ ℂMod → -1 ∈ (Base‘(Scalar‘𝑊)))
84, 7syl 17 . . . . 5 (𝑊 ∈ ℂVec → -1 ∈ (Base‘(Scalar‘𝑊)))
92, 8simplbiim 508 . . . 4 (𝑊 ∈ (NrmVec ∩ ℂVec) → -1 ∈ (Base‘(Scalar‘𝑊)))
109adantr 484 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → -1 ∈ (Base‘(Scalar‘𝑊)))
11 simpr 488 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → 𝐴𝑉)
12 ncvsprp.v . . . 4 𝑉 = (Base‘𝑊)
13 ncvsprp.n . . . 4 𝑁 = (norm‘𝑊)
14 ncvsprp.s . . . 4 · = ( ·𝑠𝑊)
1512, 13, 14, 5, 6ncvsprp 24003 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ -1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴𝑉) → (𝑁‘(-1 · 𝐴)) = ((abs‘-1) · (𝑁𝐴)))
161, 10, 11, 15syl3anc 1373 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁‘(-1 · 𝐴)) = ((abs‘-1) · (𝑁𝐴)))
17 ax-1cn 10752 . . . . . 6 1 ∈ ℂ
1817absnegi 14929 . . . . 5 (abs‘-1) = (abs‘1)
19 abs1 14826 . . . . 5 (abs‘1) = 1
2018, 19eqtri 2759 . . . 4 (abs‘-1) = 1
2120oveq1i 7201 . . 3 ((abs‘-1) · (𝑁𝐴)) = (1 · (𝑁𝐴))
22 nvcnlm 23548 . . . . . . . . 9 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
23 nlmngp 23529 . . . . . . . . 9 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
2422, 23syl 17 . . . . . . . 8 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp)
2524adantr 484 . . . . . . 7 ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec) → 𝑊 ∈ NrmGrp)
262, 25sylbi 220 . . . . . 6 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ NrmGrp)
2712, 13nmcl 23468 . . . . . 6 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
2826, 27sylan 583 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
2928recnd 10826 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℂ)
3029mulid2d 10816 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (1 · (𝑁𝐴)) = (𝑁𝐴))
3121, 30syl5eq 2783 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → ((abs‘-1) · (𝑁𝐴)) = (𝑁𝐴))
3216, 31eqtrd 2771 1 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁‘(-1 · 𝐴)) = (𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  cin 3852  cfv 6358  (class class class)co 7191  cr 10693  1c1 10695   · cmul 10699  -cneg 11028  abscabs 14762  Basecbs 16666  Scalarcsca 16752   ·𝑠 cvsca 16753  normcnm 23428  NrmGrpcngp 23429  NrmModcnlm 23432  NrmVeccnvc 23433  ℂModcclm 23913  ℂVecccvs 23974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-fz 13061  df-seq 13540  df-exp 13601  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-0g 16900  df-topgen 16902  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-grp 18322  df-minusg 18323  df-mulg 18443  df-subg 18494  df-cmn 19126  df-mgp 19459  df-ur 19471  df-ring 19518  df-cring 19519  df-subrg 19752  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-cnfld 20318  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-xms 23172  df-ms 23173  df-nm 23434  df-ngp 23435  df-nlm 23438  df-nvc 23439  df-clm 23914  df-cvs 23975
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator