Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indsumin Structured version   Visualization version   GIF version

Theorem indsumin 32838
Description: Finite sum of a product with the indicator function / Cartesian product with the indicator function. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
indsumin.1 (𝜑𝑂𝑉)
indsumin.2 (𝜑𝐴 ∈ Fin)
indsumin.3 (𝜑𝐴𝑂)
indsumin.4 (𝜑𝐵𝑂)
indsumin.5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
indsumin (𝜑 → Σ𝑘𝐴 ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = Σ𝑘 ∈ (𝐴𝐵)𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑂   𝜑,𝑘
Allowed substitution hints:   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem indsumin
StepHypRef Expression
1 inindif 4325 . . . 4 ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅
21a1i 11 . . 3 (𝜑 → ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅)
3 inundif 4429 . . . . 5 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
43eqcomi 2740 . . . 4 𝐴 = ((𝐴𝐵) ∪ (𝐴𝐵))
54a1i 11 . . 3 (𝜑𝐴 = ((𝐴𝐵) ∪ (𝐴𝐵)))
6 indsumin.2 . . 3 (𝜑𝐴 ∈ Fin)
7 pr01ssre 32802 . . . . . 6 {0, 1} ⊆ ℝ
8 ax-resscn 11060 . . . . . 6 ℝ ⊆ ℂ
97, 8sstri 3944 . . . . 5 {0, 1} ⊆ ℂ
10 indsumin.1 . . . . . . . 8 (𝜑𝑂𝑉)
11 indsumin.4 . . . . . . . 8 (𝜑𝐵𝑂)
12 indf 32831 . . . . . . . 8 ((𝑂𝑉𝐵𝑂) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
1310, 11, 12syl2anc 584 . . . . . . 7 (𝜑 → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
1413adantr 480 . . . . . 6 ((𝜑𝑘𝐴) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
15 indsumin.3 . . . . . . 7 (𝜑𝐴𝑂)
1615sselda 3934 . . . . . 6 ((𝜑𝑘𝐴) → 𝑘𝑂)
1714, 16ffvelcdmd 7018 . . . . 5 ((𝜑𝑘𝐴) → (((𝟭‘𝑂)‘𝐵)‘𝑘) ∈ {0, 1})
189, 17sselid 3932 . . . 4 ((𝜑𝑘𝐴) → (((𝟭‘𝑂)‘𝐵)‘𝑘) ∈ ℂ)
19 indsumin.5 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2018, 19mulcld 11129 . . 3 ((𝜑𝑘𝐴) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) ∈ ℂ)
212, 5, 6, 20fsumsplit 15645 . 2 (𝜑 → Σ𝑘𝐴 ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = (Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) + Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶)))
2210adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑂𝑉)
2311adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐵𝑂)
24 inss2 4188 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐵
2524a1i 11 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐵)
2625sselda 3934 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘𝐵)
27 ind1 32833 . . . . . . 7 ((𝑂𝑉𝐵𝑂𝑘𝐵) → (((𝟭‘𝑂)‘𝐵)‘𝑘) = 1)
2822, 23, 26, 27syl3anc 1373 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → (((𝟭‘𝑂)‘𝐵)‘𝑘) = 1)
2928oveq1d 7361 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝐵)) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = (1 · 𝐶))
30 inss1 4187 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
3130a1i 11 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
3231sselda 3934 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘𝐴)
3332, 19syldan 591 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
3433mullidd 11127 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝐵)) → (1 · 𝐶) = 𝐶)
3529, 34eqtrd 2766 . . . 4 ((𝜑𝑘 ∈ (𝐴𝐵)) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = 𝐶)
3635sumeq2dv 15606 . . 3 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = Σ𝑘 ∈ (𝐴𝐵)𝐶)
3710adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑂𝑉)
3811adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐵𝑂)
3915ssdifd 4095 . . . . . . . . 9 (𝜑 → (𝐴𝐵) ⊆ (𝑂𝐵))
4039sselda 3934 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘 ∈ (𝑂𝐵))
41 ind0 32834 . . . . . . . 8 ((𝑂𝑉𝐵𝑂𝑘 ∈ (𝑂𝐵)) → (((𝟭‘𝑂)‘𝐵)‘𝑘) = 0)
4237, 38, 40, 41syl3anc 1373 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → (((𝟭‘𝑂)‘𝐵)‘𝑘) = 0)
4342oveq1d 7361 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = (0 · 𝐶))
44 difssd 4087 . . . . . . . . 9 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
4544sselda 3934 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘𝐴)
4645, 19syldan 591 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
4746mul02d 11308 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → (0 · 𝐶) = 0)
4843, 47eqtrd 2766 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝐵)) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = 0)
4948sumeq2dv 15606 . . . 4 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = Σ𝑘 ∈ (𝐴𝐵)0)
50 diffi 9084 . . . . . 6 (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)
516, 50syl 17 . . . . 5 (𝜑 → (𝐴𝐵) ∈ Fin)
52 sumz 15626 . . . . . 6 (((𝐴𝐵) ⊆ (ℤ‘0) ∨ (𝐴𝐵) ∈ Fin) → Σ𝑘 ∈ (𝐴𝐵)0 = 0)
5352olcs 876 . . . . 5 ((𝐴𝐵) ∈ Fin → Σ𝑘 ∈ (𝐴𝐵)0 = 0)
5451, 53syl 17 . . . 4 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)0 = 0)
5549, 54eqtrd 2766 . . 3 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = 0)
5636, 55oveq12d 7364 . 2 (𝜑 → (Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) + Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶)) = (Σ𝑘 ∈ (𝐴𝐵)𝐶 + 0))
57 infi 9154 . . . . 5 (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)
586, 57syl 17 . . . 4 (𝜑 → (𝐴𝐵) ∈ Fin)
5958, 33fsumcl 15637 . . 3 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 ∈ ℂ)
6059addridd 11310 . 2 (𝜑 → (Σ𝑘 ∈ (𝐴𝐵)𝐶 + 0) = Σ𝑘 ∈ (𝐴𝐵)𝐶)
6121, 56, 603eqtrd 2770 1 (𝜑 → Σ𝑘𝐴 ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = Σ𝑘 ∈ (𝐴𝐵)𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cdif 3899  cun 3900  cin 3901  wss 3902  c0 4283  {cpr 4578  wf 6477  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008  cuz 12729  Σcsu 15590  𝟭cind 32826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-fzo 13552  df-seq 13906  df-exp 13966  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-sum 15591  df-ind 32827
This theorem is referenced by:  breprexpnat  34642
  Copyright terms: Public domain W3C validator