Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indsumin Structured version   Visualization version   GIF version

Theorem indsumin 32286
Description: Finite sum of a product with the indicator function / Cartesian product with the indicator function. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
indsumin.1 (𝜑𝑂𝑉)
indsumin.2 (𝜑𝐴 ∈ Fin)
indsumin.3 (𝜑𝐴𝑂)
indsumin.4 (𝜑𝐵𝑂)
indsumin.5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
indsumin (𝜑 → Σ𝑘𝐴 ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = Σ𝑘 ∈ (𝐴𝐵)𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑂   𝜑,𝑘
Allowed substitution hints:   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem indsumin
StepHypRef Expression
1 inindif 31149 . . . 4 ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅
21a1i 11 . . 3 (𝜑 → ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅)
3 inundif 4430 . . . . 5 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
43eqcomi 2746 . . . 4 𝐴 = ((𝐴𝐵) ∪ (𝐴𝐵))
54a1i 11 . . 3 (𝜑𝐴 = ((𝐴𝐵) ∪ (𝐴𝐵)))
6 indsumin.2 . . 3 (𝜑𝐴 ∈ Fin)
7 pr01ssre 31423 . . . . . 6 {0, 1} ⊆ ℝ
8 ax-resscn 11034 . . . . . 6 ℝ ⊆ ℂ
97, 8sstri 3945 . . . . 5 {0, 1} ⊆ ℂ
10 indsumin.1 . . . . . . . 8 (𝜑𝑂𝑉)
11 indsumin.4 . . . . . . . 8 (𝜑𝐵𝑂)
12 indf 32279 . . . . . . . 8 ((𝑂𝑉𝐵𝑂) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
1310, 11, 12syl2anc 585 . . . . . . 7 (𝜑 → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
1413adantr 482 . . . . . 6 ((𝜑𝑘𝐴) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
15 indsumin.3 . . . . . . 7 (𝜑𝐴𝑂)
1615sselda 3936 . . . . . 6 ((𝜑𝑘𝐴) → 𝑘𝑂)
1714, 16ffvelcdmd 7023 . . . . 5 ((𝜑𝑘𝐴) → (((𝟭‘𝑂)‘𝐵)‘𝑘) ∈ {0, 1})
189, 17sselid 3934 . . . 4 ((𝜑𝑘𝐴) → (((𝟭‘𝑂)‘𝐵)‘𝑘) ∈ ℂ)
19 indsumin.5 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2018, 19mulcld 11101 . . 3 ((𝜑𝑘𝐴) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) ∈ ℂ)
212, 5, 6, 20fsumsplit 15553 . 2 (𝜑 → Σ𝑘𝐴 ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = (Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) + Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶)))
2210adantr 482 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑂𝑉)
2311adantr 482 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐵𝑂)
24 inss2 4181 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐵
2524a1i 11 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐵)
2625sselda 3936 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘𝐵)
27 ind1 32281 . . . . . . 7 ((𝑂𝑉𝐵𝑂𝑘𝐵) → (((𝟭‘𝑂)‘𝐵)‘𝑘) = 1)
2822, 23, 26, 27syl3anc 1371 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → (((𝟭‘𝑂)‘𝐵)‘𝑘) = 1)
2928oveq1d 7357 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝐵)) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = (1 · 𝐶))
30 inss1 4180 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
3130a1i 11 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
3231sselda 3936 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘𝐴)
3332, 19syldan 592 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
3433mulid2d 11099 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝐵)) → (1 · 𝐶) = 𝐶)
3529, 34eqtrd 2777 . . . 4 ((𝜑𝑘 ∈ (𝐴𝐵)) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = 𝐶)
3635sumeq2dv 15515 . . 3 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = Σ𝑘 ∈ (𝐴𝐵)𝐶)
3710adantr 482 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑂𝑉)
3811adantr 482 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐵𝑂)
3915ssdifd 4092 . . . . . . . . 9 (𝜑 → (𝐴𝐵) ⊆ (𝑂𝐵))
4039sselda 3936 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘 ∈ (𝑂𝐵))
41 ind0 32282 . . . . . . . 8 ((𝑂𝑉𝐵𝑂𝑘 ∈ (𝑂𝐵)) → (((𝟭‘𝑂)‘𝐵)‘𝑘) = 0)
4237, 38, 40, 41syl3anc 1371 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → (((𝟭‘𝑂)‘𝐵)‘𝑘) = 0)
4342oveq1d 7357 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = (0 · 𝐶))
44 difssd 4084 . . . . . . . . 9 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
4544sselda 3936 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘𝐴)
4645, 19syldan 592 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
4746mul02d 11279 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → (0 · 𝐶) = 0)
4843, 47eqtrd 2777 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝐵)) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = 0)
4948sumeq2dv 15515 . . . 4 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = Σ𝑘 ∈ (𝐴𝐵)0)
50 diffi 9049 . . . . . 6 (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)
516, 50syl 17 . . . . 5 (𝜑 → (𝐴𝐵) ∈ Fin)
52 sumz 15534 . . . . . 6 (((𝐴𝐵) ⊆ (ℤ‘0) ∨ (𝐴𝐵) ∈ Fin) → Σ𝑘 ∈ (𝐴𝐵)0 = 0)
5352olcs 874 . . . . 5 ((𝐴𝐵) ∈ Fin → Σ𝑘 ∈ (𝐴𝐵)0 = 0)
5451, 53syl 17 . . . 4 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)0 = 0)
5549, 54eqtrd 2777 . . 3 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = 0)
5636, 55oveq12d 7360 . 2 (𝜑 → (Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) + Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶)) = (Σ𝑘 ∈ (𝐴𝐵)𝐶 + 0))
57 infi 9138 . . . . 5 (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)
586, 57syl 17 . . . 4 (𝜑 → (𝐴𝐵) ∈ Fin)
5958, 33fsumcl 15545 . . 3 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 ∈ ℂ)
6059addid1d 11281 . 2 (𝜑 → (Σ𝑘 ∈ (𝐴𝐵)𝐶 + 0) = Σ𝑘 ∈ (𝐴𝐵)𝐶)
6121, 56, 603eqtrd 2781 1 (𝜑 → Σ𝑘𝐴 ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = Σ𝑘 ∈ (𝐴𝐵)𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  cdif 3899  cun 3900  cin 3901  wss 3902  c0 4274  {cpr 4580  wf 6480  cfv 6484  (class class class)co 7342  Fincfn 8809  cc 10975  cr 10976  0cc0 10977  1c1 10978   + caddc 10980   · cmul 10982  cuz 12688  Σcsu 15497  𝟭cind 32274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-inf2 9503  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-pre-sup 11055
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-se 5581  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-isom 6493  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-sup 9304  df-oi 9372  df-card 9801  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-nn 12080  df-2 12142  df-3 12143  df-n0 12340  df-z 12426  df-uz 12689  df-rp 12837  df-fz 13346  df-fzo 13489  df-seq 13828  df-exp 13889  df-hash 14151  df-cj 14910  df-re 14911  df-im 14912  df-sqrt 15046  df-abs 15047  df-clim 15297  df-sum 15498  df-ind 32275
This theorem is referenced by:  breprexpnat  32912
  Copyright terms: Public domain W3C validator