Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvepimaex Structured version   Visualization version   GIF version

Theorem cnvepimaex 38278
Description: The image of converse epsilon exists, proof via imaexALTV 38272 (see also cnvepima 38279 and uniexg 7743 for alternate way). (Contributed by Peter Mazsa, 22-Mar-2023.)
Assertion
Ref Expression
cnvepimaex (𝐴𝑉 → ( E “ 𝐴) ∈ V)

Proof of Theorem cnvepimaex
StepHypRef Expression
1 cnvepresex 38276 . 2 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
2 imaexALTV 38272 . . 3 (( E ∈ V ∨ (( E ↾ 𝐴) ∈ V ∧ 𝐴𝑉)) → ( E “ 𝐴) ∈ V)
32olcs 876 . 2 ((( E ↾ 𝐴) ∈ V ∧ 𝐴𝑉) → ( E “ 𝐴) ∈ V)
41, 3mpancom 688 1 (𝐴𝑉 → ( E “ 𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  Vcvv 3464   E cep 5565  ccnv 5666  cres 5669  cima 5670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-eprel 5566  df-xp 5673  df-rel 5674  df-cnv 5675  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ec 8730  df-qs 8734
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator