| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvepimaex | Structured version Visualization version GIF version | ||
| Description: The image of converse epsilon exists, proof via imaexALTV 38272 (see also cnvepima 38279 and uniexg 7743 for alternate way). (Contributed by Peter Mazsa, 22-Mar-2023.) |
| Ref | Expression |
|---|---|
| cnvepimaex | ⊢ (𝐴 ∈ 𝑉 → (◡ E “ 𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvepresex 38276 | . 2 ⊢ (𝐴 ∈ 𝑉 → (◡ E ↾ 𝐴) ∈ V) | |
| 2 | imaexALTV 38272 | . . 3 ⊢ ((◡ E ∈ V ∨ ((◡ E ↾ 𝐴) ∈ V ∧ 𝐴 ∈ 𝑉)) → (◡ E “ 𝐴) ∈ V) | |
| 3 | 2 | olcs 876 | . 2 ⊢ (((◡ E ↾ 𝐴) ∈ V ∧ 𝐴 ∈ 𝑉) → (◡ E “ 𝐴) ∈ V) |
| 4 | 1, 3 | mpancom 688 | 1 ⊢ (𝐴 ∈ 𝑉 → (◡ E “ 𝐴) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 Vcvv 3464 E cep 5565 ◡ccnv 5666 ↾ cres 5669 “ cima 5670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-eprel 5566 df-xp 5673 df-rel 5674 df-cnv 5675 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ec 8730 df-qs 8734 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |