MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem2 Structured version   Visualization version   GIF version

Theorem bposlem2 25430
Description: There are no odd primes in the range (2𝑁 / 3, 𝑁] dividing the 𝑁-th central binomial coefficient. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
bposlem2.1 (𝜑𝑁 ∈ ℕ)
bposlem2.2 (𝜑𝑃 ∈ ℙ)
bposlem2.3 (𝜑 → 2 < 𝑃)
bposlem2.4 (𝜑 → ((2 · 𝑁) / 3) < 𝑃)
bposlem2.5 (𝜑𝑃𝑁)
Assertion
Ref Expression
bposlem2 (𝜑 → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = 0)

Proof of Theorem bposlem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 bposlem2.1 . . 3 (𝜑𝑁 ∈ ℕ)
2 bposlem2.2 . . 3 (𝜑𝑃 ∈ ℙ)
3 pcbcctr 25421 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
41, 2, 3syl2anc 579 . 2 (𝜑 → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
5 elfznn 12670 . . . . . 6 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ)
6 elnn1uz2 12055 . . . . . 6 (𝑘 ∈ ℕ ↔ (𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2)))
75, 6sylib 210 . . . . 5 (𝑘 ∈ (1...(2 · 𝑁)) → (𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2)))
8 oveq2 6918 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑃𝑘) = (𝑃↑1))
9 prmnn 15767 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
102, 9syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
1110nncnd 11375 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℂ)
1211exp1d 13304 . . . . . . . . . . . 12 (𝜑 → (𝑃↑1) = 𝑃)
138, 12sylan9eqr 2883 . . . . . . . . . . 11 ((𝜑𝑘 = 1) → (𝑃𝑘) = 𝑃)
1413oveq2d 6926 . . . . . . . . . 10 ((𝜑𝑘 = 1) → ((2 · 𝑁) / (𝑃𝑘)) = ((2 · 𝑁) / 𝑃))
1514fveq2d 6441 . . . . . . . . 9 ((𝜑𝑘 = 1) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) = (⌊‘((2 · 𝑁) / 𝑃)))
16 2t1e2 11528 . . . . . . . . . . . . 13 (2 · 1) = 2
1711mulid2d 10382 . . . . . . . . . . . . . . . 16 (𝜑 → (1 · 𝑃) = 𝑃)
18 bposlem2.5 . . . . . . . . . . . . . . . 16 (𝜑𝑃𝑁)
1917, 18eqbrtrd 4897 . . . . . . . . . . . . . . 15 (𝜑 → (1 · 𝑃) ≤ 𝑁)
20 1red 10364 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
211nnred 11374 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
2210nnred 11374 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℝ)
2310nngt0d 11407 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝑃)
24 lemuldiv 11240 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → ((1 · 𝑃) ≤ 𝑁 ↔ 1 ≤ (𝑁 / 𝑃)))
2520, 21, 22, 23, 24syl112anc 1497 . . . . . . . . . . . . . . 15 (𝜑 → ((1 · 𝑃) ≤ 𝑁 ↔ 1 ≤ (𝑁 / 𝑃)))
2619, 25mpbid 224 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ (𝑁 / 𝑃))
2721, 10nndivred 11412 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 / 𝑃) ∈ ℝ)
28 1re 10363 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
29 2re 11432 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
30 2pos 11468 . . . . . . . . . . . . . . . . 17 0 < 2
3129, 30pm3.2i 464 . . . . . . . . . . . . . . . 16 (2 ∈ ℝ ∧ 0 < 2)
32 lemul2 11213 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑁 / 𝑃) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (1 ≤ (𝑁 / 𝑃) ↔ (2 · 1) ≤ (2 · (𝑁 / 𝑃))))
3328, 31, 32mp3an13 1580 . . . . . . . . . . . . . . 15 ((𝑁 / 𝑃) ∈ ℝ → (1 ≤ (𝑁 / 𝑃) ↔ (2 · 1) ≤ (2 · (𝑁 / 𝑃))))
3427, 33syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1 ≤ (𝑁 / 𝑃) ↔ (2 · 1) ≤ (2 · (𝑁 / 𝑃))))
3526, 34mpbid 224 . . . . . . . . . . . . 13 (𝜑 → (2 · 1) ≤ (2 · (𝑁 / 𝑃)))
3616, 35syl5eqbrr 4911 . . . . . . . . . . . 12 (𝜑 → 2 ≤ (2 · (𝑁 / 𝑃)))
37 2cnd 11436 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℂ)
381nncnd 11375 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
3910nnne0d 11408 . . . . . . . . . . . . 13 (𝜑𝑃 ≠ 0)
4037, 38, 11, 39divassd 11169 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) / 𝑃) = (2 · (𝑁 / 𝑃)))
4136, 40breqtrrd 4903 . . . . . . . . . . 11 (𝜑 → 2 ≤ ((2 · 𝑁) / 𝑃))
42 bposlem2.4 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝑁) / 3) < 𝑃)
43 2nn 11431 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
44 nnmulcl 11382 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
4543, 1, 44sylancr 581 . . . . . . . . . . . . . . 15 (𝜑 → (2 · 𝑁) ∈ ℕ)
4645nnred 11374 . . . . . . . . . . . . . 14 (𝜑 → (2 · 𝑁) ∈ ℝ)
47 3re 11438 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
48 3pos 11470 . . . . . . . . . . . . . . . 16 0 < 3
4947, 48pm3.2i 464 . . . . . . . . . . . . . . 15 (3 ∈ ℝ ∧ 0 < 3)
50 ltdiv23 11251 . . . . . . . . . . . . . . 15 (((2 · 𝑁) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (((2 · 𝑁) / 3) < 𝑃 ↔ ((2 · 𝑁) / 𝑃) < 3))
5149, 50mp3an2 1577 . . . . . . . . . . . . . 14 (((2 · 𝑁) ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (((2 · 𝑁) / 3) < 𝑃 ↔ ((2 · 𝑁) / 𝑃) < 3))
5246, 22, 23, 51syl12anc 870 . . . . . . . . . . . . 13 (𝜑 → (((2 · 𝑁) / 3) < 𝑃 ↔ ((2 · 𝑁) / 𝑃) < 3))
5342, 52mpbid 224 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) / 𝑃) < 3)
54 df-3 11422 . . . . . . . . . . . 12 3 = (2 + 1)
5553, 54syl6breq 4916 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) / 𝑃) < (2 + 1))
5646, 10nndivred 11412 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) / 𝑃) ∈ ℝ)
57 2z 11744 . . . . . . . . . . . 12 2 ∈ ℤ
58 flbi 12919 . . . . . . . . . . . 12 ((((2 · 𝑁) / 𝑃) ∈ ℝ ∧ 2 ∈ ℤ) → ((⌊‘((2 · 𝑁) / 𝑃)) = 2 ↔ (2 ≤ ((2 · 𝑁) / 𝑃) ∧ ((2 · 𝑁) / 𝑃) < (2 + 1))))
5956, 57, 58sylancl 580 . . . . . . . . . . 11 (𝜑 → ((⌊‘((2 · 𝑁) / 𝑃)) = 2 ↔ (2 ≤ ((2 · 𝑁) / 𝑃) ∧ ((2 · 𝑁) / 𝑃) < (2 + 1))))
6041, 55, 59mpbir2and 704 . . . . . . . . . 10 (𝜑 → (⌊‘((2 · 𝑁) / 𝑃)) = 2)
6160adantr 474 . . . . . . . . 9 ((𝜑𝑘 = 1) → (⌊‘((2 · 𝑁) / 𝑃)) = 2)
6215, 61eqtrd 2861 . . . . . . . 8 ((𝜑𝑘 = 1) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) = 2)
6313oveq2d 6926 . . . . . . . . . . . 12 ((𝜑𝑘 = 1) → (𝑁 / (𝑃𝑘)) = (𝑁 / 𝑃))
6463fveq2d 6441 . . . . . . . . . . 11 ((𝜑𝑘 = 1) → (⌊‘(𝑁 / (𝑃𝑘))) = (⌊‘(𝑁 / 𝑃)))
65 remulcl 10344 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ (𝑁 / 𝑃) ∈ ℝ) → (2 · (𝑁 / 𝑃)) ∈ ℝ)
6629, 27, 65sylancr 581 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝑁 / 𝑃)) ∈ ℝ)
6747a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ∈ ℝ)
68 4re 11443 . . . . . . . . . . . . . . . . . 18 4 ∈ ℝ
6968a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 4 ∈ ℝ)
7040, 53eqbrtrrd 4899 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝑁 / 𝑃)) < 3)
71 3lt4 11539 . . . . . . . . . . . . . . . . . 18 3 < 4
7271a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 < 4)
7366, 67, 69, 70, 72lttrd 10524 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · (𝑁 / 𝑃)) < 4)
74 2t2e4 11529 . . . . . . . . . . . . . . . 16 (2 · 2) = 4
7573, 74syl6breqr 4917 . . . . . . . . . . . . . . 15 (𝜑 → (2 · (𝑁 / 𝑃)) < (2 · 2))
76 ltmul2 11211 . . . . . . . . . . . . . . . . 17 (((𝑁 / 𝑃) ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑁 / 𝑃) < 2 ↔ (2 · (𝑁 / 𝑃)) < (2 · 2)))
7729, 31, 76mp3an23 1581 . . . . . . . . . . . . . . . 16 ((𝑁 / 𝑃) ∈ ℝ → ((𝑁 / 𝑃) < 2 ↔ (2 · (𝑁 / 𝑃)) < (2 · 2)))
7827, 77syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 / 𝑃) < 2 ↔ (2 · (𝑁 / 𝑃)) < (2 · 2)))
7975, 78mpbird 249 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 / 𝑃) < 2)
80 df-2 11421 . . . . . . . . . . . . . 14 2 = (1 + 1)
8179, 80syl6breq 4916 . . . . . . . . . . . . 13 (𝜑 → (𝑁 / 𝑃) < (1 + 1))
82 1z 11742 . . . . . . . . . . . . . 14 1 ∈ ℤ
83 flbi 12919 . . . . . . . . . . . . . 14 (((𝑁 / 𝑃) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(𝑁 / 𝑃)) = 1 ↔ (1 ≤ (𝑁 / 𝑃) ∧ (𝑁 / 𝑃) < (1 + 1))))
8427, 82, 83sylancl 580 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘(𝑁 / 𝑃)) = 1 ↔ (1 ≤ (𝑁 / 𝑃) ∧ (𝑁 / 𝑃) < (1 + 1))))
8526, 81, 84mpbir2and 704 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑁 / 𝑃)) = 1)
8685adantr 474 . . . . . . . . . . 11 ((𝜑𝑘 = 1) → (⌊‘(𝑁 / 𝑃)) = 1)
8764, 86eqtrd 2861 . . . . . . . . . 10 ((𝜑𝑘 = 1) → (⌊‘(𝑁 / (𝑃𝑘))) = 1)
8887oveq2d 6926 . . . . . . . . 9 ((𝜑𝑘 = 1) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = (2 · 1))
8988, 16syl6eq 2877 . . . . . . . 8 ((𝜑𝑘 = 1) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = 2)
9062, 89oveq12d 6928 . . . . . . 7 ((𝜑𝑘 = 1) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = (2 − 2))
91 2cn 11433 . . . . . . . 8 2 ∈ ℂ
9291subidi 10680 . . . . . . 7 (2 − 2) = 0
9390, 92syl6eq 2877 . . . . . 6 ((𝜑𝑘 = 1) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
9445nnrpd 12161 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℝ+)
9594adantr 474 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) ∈ ℝ+)
96 eluzge2nn0 12016 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℕ0)
97 nnexpcl 13174 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ)
9810, 96, 97syl2an 589 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃𝑘) ∈ ℕ)
9998nnrpd 12161 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃𝑘) ∈ ℝ+)
10095, 99rpdivcld 12180 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ+)
101100rpge0d 12167 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → 0 ≤ ((2 · 𝑁) / (𝑃𝑘)))
10246adantr 474 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) ∈ ℝ)
103 remulcl 10344 . . . . . . . . . . . . . . 15 ((3 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (3 · 𝑃) ∈ ℝ)
10447, 22, 103sylancr 581 . . . . . . . . . . . . . 14 (𝜑 → (3 · 𝑃) ∈ ℝ)
105104adantr 474 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (3 · 𝑃) ∈ ℝ)
10698nnred 11374 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃𝑘) ∈ ℝ)
107 ltdivmul 11235 . . . . . . . . . . . . . . . . 17 (((2 · 𝑁) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (((2 · 𝑁) / 3) < 𝑃 ↔ (2 · 𝑁) < (3 · 𝑃)))
10849, 107mp3an3 1578 . . . . . . . . . . . . . . . 16 (((2 · 𝑁) ∈ ℝ ∧ 𝑃 ∈ ℝ) → (((2 · 𝑁) / 3) < 𝑃 ↔ (2 · 𝑁) < (3 · 𝑃)))
10946, 22, 108syl2anc 579 . . . . . . . . . . . . . . 15 (𝜑 → (((2 · 𝑁) / 3) < 𝑃 ↔ (2 · 𝑁) < (3 · 𝑃)))
11042, 109mpbid 224 . . . . . . . . . . . . . 14 (𝜑 → (2 · 𝑁) < (3 · 𝑃))
111110adantr 474 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) < (3 · 𝑃))
11222, 22remulcld 10394 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃 · 𝑃) ∈ ℝ)
113112adantr 474 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃 · 𝑃) ∈ ℝ)
114 bposlem2.3 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 < 𝑃)
115 nnltp1le 11768 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (2 < 𝑃 ↔ (2 + 1) ≤ 𝑃))
11643, 10, 115sylancr 581 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 < 𝑃 ↔ (2 + 1) ≤ 𝑃))
117114, 116mpbid 224 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 + 1) ≤ 𝑃)
11854, 117syl5eqbr 4910 . . . . . . . . . . . . . . . 16 (𝜑 → 3 ≤ 𝑃)
119 lemul1 11212 . . . . . . . . . . . . . . . . . 18 ((3 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (3 ≤ 𝑃 ↔ (3 · 𝑃) ≤ (𝑃 · 𝑃)))
12047, 119mp3an1 1576 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (3 ≤ 𝑃 ↔ (3 · 𝑃) ≤ (𝑃 · 𝑃)))
12122, 22, 23, 120syl12anc 870 . . . . . . . . . . . . . . . 16 (𝜑 → (3 ≤ 𝑃 ↔ (3 · 𝑃) ≤ (𝑃 · 𝑃)))
122118, 121mpbid 224 . . . . . . . . . . . . . . 15 (𝜑 → (3 · 𝑃) ≤ (𝑃 · 𝑃))
123122adantr 474 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → (3 · 𝑃) ≤ (𝑃 · 𝑃))
12411sqvald 13306 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃↑2) = (𝑃 · 𝑃))
125124adantr 474 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃↑2) = (𝑃 · 𝑃))
12622adantr 474 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑃 ∈ ℝ)
12710nnge1d 11406 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≤ 𝑃)
128127adantr 474 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘2)) → 1 ≤ 𝑃)
129 simpr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑘 ∈ (ℤ‘2))
130126, 128, 129leexp2ad 13344 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃↑2) ≤ (𝑃𝑘))
131125, 130eqbrtrrd 4899 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃 · 𝑃) ≤ (𝑃𝑘))
132105, 113, 106, 123, 131letrd 10520 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (3 · 𝑃) ≤ (𝑃𝑘))
133102, 105, 106, 111, 132ltletrd 10523 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) < (𝑃𝑘))
13498nncnd 11375 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃𝑘) ∈ ℂ)
135134mulid1d 10381 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → ((𝑃𝑘) · 1) = (𝑃𝑘))
136133, 135breqtrrd 4903 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) < ((𝑃𝑘) · 1))
137 1red 10364 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → 1 ∈ ℝ)
138102, 137, 99ltdivmuld 12214 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (((2 · 𝑁) / (𝑃𝑘)) < 1 ↔ (2 · 𝑁) < ((𝑃𝑘) · 1)))
139136, 138mpbird 249 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → ((2 · 𝑁) / (𝑃𝑘)) < 1)
140 1e0p1 11871 . . . . . . . . . 10 1 = (0 + 1)
141139, 140syl6breq 4916 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))
142100rpred 12163 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ)
143 0z 11722 . . . . . . . . . 10 0 ∈ ℤ
144 flbi 12919 . . . . . . . . . 10 ((((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0 ↔ (0 ≤ ((2 · 𝑁) / (𝑃𝑘)) ∧ ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))))
145142, 143, 144sylancl 580 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0 ↔ (0 ≤ ((2 · 𝑁) / (𝑃𝑘)) ∧ ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))))
146101, 141, 145mpbir2and 704 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘2)) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0)
1471nnrpd 12161 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ+)
148147adantr 474 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 ∈ ℝ+)
149148, 99rpdivcld 12180 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑁 / (𝑃𝑘)) ∈ ℝ+)
150149rpge0d 12167 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → 0 ≤ (𝑁 / (𝑃𝑘)))
15121adantr 474 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 ∈ ℝ)
15221, 147ltaddrpd 12196 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 < (𝑁 + 𝑁))
153382timesd 11608 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁))
154152, 153breqtrrd 4903 . . . . . . . . . . . . . . . 16 (𝜑𝑁 < (2 · 𝑁))
155154adantr 474 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 < (2 · 𝑁))
156151, 102, 106, 155, 133lttrd 10524 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 < (𝑃𝑘))
157156, 135breqtrrd 4903 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 < ((𝑃𝑘) · 1))
158151, 137, 99ltdivmuld 12214 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → ((𝑁 / (𝑃𝑘)) < 1 ↔ 𝑁 < ((𝑃𝑘) · 1)))
159157, 158mpbird 249 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑁 / (𝑃𝑘)) < 1)
160159, 140syl6breq 4916 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑁 / (𝑃𝑘)) < (0 + 1))
161149rpred 12163 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
162 flbi 12919 . . . . . . . . . . . 12 (((𝑁 / (𝑃𝑘)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (𝑃𝑘))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑘)) ∧ (𝑁 / (𝑃𝑘)) < (0 + 1))))
163161, 143, 162sylancl 580 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → ((⌊‘(𝑁 / (𝑃𝑘))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑘)) ∧ (𝑁 / (𝑃𝑘)) < (0 + 1))))
164150, 160, 163mpbir2and 704 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → (⌊‘(𝑁 / (𝑃𝑘))) = 0)
165164oveq2d 6926 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = (2 · 0))
166 2t0e0 11534 . . . . . . . . 9 (2 · 0) = 0
167165, 166syl6eq 2877 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = 0)
168146, 167oveq12d 6928 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘2)) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = (0 − 0))
169 0m0e0 11485 . . . . . . 7 (0 − 0) = 0
170168, 169syl6eq 2877 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘2)) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
17193, 170jaodan 985 . . . . 5 ((𝜑 ∧ (𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
1727, 171sylan2 586 . . . 4 ((𝜑𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
173172sumeq2dv 14817 . . 3 (𝜑 → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = Σ𝑘 ∈ (1...(2 · 𝑁))0)
174 fzfid 13074 . . . 4 (𝜑 → (1...(2 · 𝑁)) ∈ Fin)
175 sumz 14837 . . . . 5 (((1...(2 · 𝑁)) ⊆ (ℤ‘1) ∨ (1...(2 · 𝑁)) ∈ Fin) → Σ𝑘 ∈ (1...(2 · 𝑁))0 = 0)
176175olcs 907 . . . 4 ((1...(2 · 𝑁)) ∈ Fin → Σ𝑘 ∈ (1...(2 · 𝑁))0 = 0)
177174, 176syl 17 . . 3 (𝜑 → Σ𝑘 ∈ (1...(2 · 𝑁))0 = 0)
178173, 177eqtrd 2861 . 2 (𝜑 → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
1794, 178eqtrd 2861 1 (𝜑 → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 878   = wceq 1656  wcel 2164  wss 3798   class class class wbr 4875  cfv 6127  (class class class)co 6910  Fincfn 8228  cr 10258  0cc0 10259  1c1 10260   + caddc 10262   · cmul 10264   < clt 10398  cle 10399  cmin 10592   / cdiv 11016  cn 11357  2c2 11413  3c3 11414  4c4 11415  0cn0 11625  cz 11711  cuz 11975  +crp 12119  ...cfz 12626  cfl 12893  cexp 13161  Ccbc 13389  Σcsu 14800  cprime 15764   pCnt cpc 15919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-sup 8623  df-inf 8624  df-oi 8691  df-card 9085  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-n0 11626  df-z 11712  df-uz 11976  df-q 12079  df-rp 12120  df-fz 12627  df-fzo 12768  df-fl 12895  df-mod 12971  df-seq 13103  df-exp 13162  df-fac 13361  df-bc 13390  df-hash 13418  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-clim 14603  df-sum 14801  df-dvds 15365  df-gcd 15597  df-prm 15765  df-pc 15920
This theorem is referenced by:  bposlem3  25431
  Copyright terms: Public domain W3C validator