MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem2 Structured version   Visualization version   GIF version

Theorem bposlem2 26021
Description: There are no odd primes in the range (2𝑁 / 3, 𝑁] dividing the 𝑁-th central binomial coefficient. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
bposlem2.1 (𝜑𝑁 ∈ ℕ)
bposlem2.2 (𝜑𝑃 ∈ ℙ)
bposlem2.3 (𝜑 → 2 < 𝑃)
bposlem2.4 (𝜑 → ((2 · 𝑁) / 3) < 𝑃)
bposlem2.5 (𝜑𝑃𝑁)
Assertion
Ref Expression
bposlem2 (𝜑 → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = 0)

Proof of Theorem bposlem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 bposlem2.1 . . 3 (𝜑𝑁 ∈ ℕ)
2 bposlem2.2 . . 3 (𝜑𝑃 ∈ ℙ)
3 pcbcctr 26012 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
41, 2, 3syl2anc 587 . 2 (𝜑 → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
5 elfznn 13028 . . . . . 6 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ)
6 elnn1uz2 12408 . . . . . 6 (𝑘 ∈ ℕ ↔ (𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2)))
75, 6sylib 221 . . . . 5 (𝑘 ∈ (1...(2 · 𝑁)) → (𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2)))
8 oveq2 7179 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑃𝑘) = (𝑃↑1))
9 prmnn 16116 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
102, 9syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
1110nncnd 11733 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℂ)
1211exp1d 13598 . . . . . . . . . . . 12 (𝜑 → (𝑃↑1) = 𝑃)
138, 12sylan9eqr 2795 . . . . . . . . . . 11 ((𝜑𝑘 = 1) → (𝑃𝑘) = 𝑃)
1413oveq2d 7187 . . . . . . . . . 10 ((𝜑𝑘 = 1) → ((2 · 𝑁) / (𝑃𝑘)) = ((2 · 𝑁) / 𝑃))
1514fveq2d 6679 . . . . . . . . 9 ((𝜑𝑘 = 1) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) = (⌊‘((2 · 𝑁) / 𝑃)))
16 2t1e2 11880 . . . . . . . . . . . . 13 (2 · 1) = 2
1711mulid2d 10738 . . . . . . . . . . . . . . . 16 (𝜑 → (1 · 𝑃) = 𝑃)
18 bposlem2.5 . . . . . . . . . . . . . . . 16 (𝜑𝑃𝑁)
1917, 18eqbrtrd 5053 . . . . . . . . . . . . . . 15 (𝜑 → (1 · 𝑃) ≤ 𝑁)
20 1red 10721 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
211nnred 11732 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
2210nnred 11732 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℝ)
2310nngt0d 11766 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝑃)
24 lemuldiv 11599 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → ((1 · 𝑃) ≤ 𝑁 ↔ 1 ≤ (𝑁 / 𝑃)))
2520, 21, 22, 23, 24syl112anc 1375 . . . . . . . . . . . . . . 15 (𝜑 → ((1 · 𝑃) ≤ 𝑁 ↔ 1 ≤ (𝑁 / 𝑃)))
2619, 25mpbid 235 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ (𝑁 / 𝑃))
2721, 10nndivred 11771 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 / 𝑃) ∈ ℝ)
28 1re 10720 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
29 2re 11791 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
30 2pos 11820 . . . . . . . . . . . . . . . . 17 0 < 2
3129, 30pm3.2i 474 . . . . . . . . . . . . . . . 16 (2 ∈ ℝ ∧ 0 < 2)
32 lemul2 11572 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑁 / 𝑃) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (1 ≤ (𝑁 / 𝑃) ↔ (2 · 1) ≤ (2 · (𝑁 / 𝑃))))
3328, 31, 32mp3an13 1453 . . . . . . . . . . . . . . 15 ((𝑁 / 𝑃) ∈ ℝ → (1 ≤ (𝑁 / 𝑃) ↔ (2 · 1) ≤ (2 · (𝑁 / 𝑃))))
3427, 33syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1 ≤ (𝑁 / 𝑃) ↔ (2 · 1) ≤ (2 · (𝑁 / 𝑃))))
3526, 34mpbid 235 . . . . . . . . . . . . 13 (𝜑 → (2 · 1) ≤ (2 · (𝑁 / 𝑃)))
3616, 35eqbrtrrid 5067 . . . . . . . . . . . 12 (𝜑 → 2 ≤ (2 · (𝑁 / 𝑃)))
37 2cnd 11795 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℂ)
381nncnd 11733 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
3910nnne0d 11767 . . . . . . . . . . . . 13 (𝜑𝑃 ≠ 0)
4037, 38, 11, 39divassd 11530 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) / 𝑃) = (2 · (𝑁 / 𝑃)))
4136, 40breqtrrd 5059 . . . . . . . . . . 11 (𝜑 → 2 ≤ ((2 · 𝑁) / 𝑃))
42 bposlem2.4 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝑁) / 3) < 𝑃)
43 2nn 11790 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
44 nnmulcl 11741 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
4543, 1, 44sylancr 590 . . . . . . . . . . . . . . 15 (𝜑 → (2 · 𝑁) ∈ ℕ)
4645nnred 11732 . . . . . . . . . . . . . 14 (𝜑 → (2 · 𝑁) ∈ ℝ)
47 3re 11797 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
48 3pos 11822 . . . . . . . . . . . . . . . 16 0 < 3
4947, 48pm3.2i 474 . . . . . . . . . . . . . . 15 (3 ∈ ℝ ∧ 0 < 3)
50 ltdiv23 11610 . . . . . . . . . . . . . . 15 (((2 · 𝑁) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (((2 · 𝑁) / 3) < 𝑃 ↔ ((2 · 𝑁) / 𝑃) < 3))
5149, 50mp3an2 1450 . . . . . . . . . . . . . 14 (((2 · 𝑁) ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (((2 · 𝑁) / 3) < 𝑃 ↔ ((2 · 𝑁) / 𝑃) < 3))
5246, 22, 23, 51syl12anc 836 . . . . . . . . . . . . 13 (𝜑 → (((2 · 𝑁) / 3) < 𝑃 ↔ ((2 · 𝑁) / 𝑃) < 3))
5342, 52mpbid 235 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) / 𝑃) < 3)
54 df-3 11781 . . . . . . . . . . . 12 3 = (2 + 1)
5553, 54breqtrdi 5072 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) / 𝑃) < (2 + 1))
5646, 10nndivred 11771 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) / 𝑃) ∈ ℝ)
57 2z 12096 . . . . . . . . . . . 12 2 ∈ ℤ
58 flbi 13278 . . . . . . . . . . . 12 ((((2 · 𝑁) / 𝑃) ∈ ℝ ∧ 2 ∈ ℤ) → ((⌊‘((2 · 𝑁) / 𝑃)) = 2 ↔ (2 ≤ ((2 · 𝑁) / 𝑃) ∧ ((2 · 𝑁) / 𝑃) < (2 + 1))))
5956, 57, 58sylancl 589 . . . . . . . . . . 11 (𝜑 → ((⌊‘((2 · 𝑁) / 𝑃)) = 2 ↔ (2 ≤ ((2 · 𝑁) / 𝑃) ∧ ((2 · 𝑁) / 𝑃) < (2 + 1))))
6041, 55, 59mpbir2and 713 . . . . . . . . . 10 (𝜑 → (⌊‘((2 · 𝑁) / 𝑃)) = 2)
6160adantr 484 . . . . . . . . 9 ((𝜑𝑘 = 1) → (⌊‘((2 · 𝑁) / 𝑃)) = 2)
6215, 61eqtrd 2773 . . . . . . . 8 ((𝜑𝑘 = 1) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) = 2)
6313oveq2d 7187 . . . . . . . . . . . 12 ((𝜑𝑘 = 1) → (𝑁 / (𝑃𝑘)) = (𝑁 / 𝑃))
6463fveq2d 6679 . . . . . . . . . . 11 ((𝜑𝑘 = 1) → (⌊‘(𝑁 / (𝑃𝑘))) = (⌊‘(𝑁 / 𝑃)))
65 remulcl 10701 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ (𝑁 / 𝑃) ∈ ℝ) → (2 · (𝑁 / 𝑃)) ∈ ℝ)
6629, 27, 65sylancr 590 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝑁 / 𝑃)) ∈ ℝ)
6747a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ∈ ℝ)
68 4re 11801 . . . . . . . . . . . . . . . . . 18 4 ∈ ℝ
6968a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 4 ∈ ℝ)
7040, 53eqbrtrrd 5055 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝑁 / 𝑃)) < 3)
71 3lt4 11891 . . . . . . . . . . . . . . . . . 18 3 < 4
7271a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 < 4)
7366, 67, 69, 70, 72lttrd 10880 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · (𝑁 / 𝑃)) < 4)
74 2t2e4 11881 . . . . . . . . . . . . . . . 16 (2 · 2) = 4
7573, 74breqtrrdi 5073 . . . . . . . . . . . . . . 15 (𝜑 → (2 · (𝑁 / 𝑃)) < (2 · 2))
76 ltmul2 11570 . . . . . . . . . . . . . . . . 17 (((𝑁 / 𝑃) ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑁 / 𝑃) < 2 ↔ (2 · (𝑁 / 𝑃)) < (2 · 2)))
7729, 31, 76mp3an23 1454 . . . . . . . . . . . . . . . 16 ((𝑁 / 𝑃) ∈ ℝ → ((𝑁 / 𝑃) < 2 ↔ (2 · (𝑁 / 𝑃)) < (2 · 2)))
7827, 77syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 / 𝑃) < 2 ↔ (2 · (𝑁 / 𝑃)) < (2 · 2)))
7975, 78mpbird 260 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 / 𝑃) < 2)
80 df-2 11780 . . . . . . . . . . . . . 14 2 = (1 + 1)
8179, 80breqtrdi 5072 . . . . . . . . . . . . 13 (𝜑 → (𝑁 / 𝑃) < (1 + 1))
82 1z 12094 . . . . . . . . . . . . . 14 1 ∈ ℤ
83 flbi 13278 . . . . . . . . . . . . . 14 (((𝑁 / 𝑃) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(𝑁 / 𝑃)) = 1 ↔ (1 ≤ (𝑁 / 𝑃) ∧ (𝑁 / 𝑃) < (1 + 1))))
8427, 82, 83sylancl 589 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘(𝑁 / 𝑃)) = 1 ↔ (1 ≤ (𝑁 / 𝑃) ∧ (𝑁 / 𝑃) < (1 + 1))))
8526, 81, 84mpbir2and 713 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑁 / 𝑃)) = 1)
8685adantr 484 . . . . . . . . . . 11 ((𝜑𝑘 = 1) → (⌊‘(𝑁 / 𝑃)) = 1)
8764, 86eqtrd 2773 . . . . . . . . . 10 ((𝜑𝑘 = 1) → (⌊‘(𝑁 / (𝑃𝑘))) = 1)
8887oveq2d 7187 . . . . . . . . 9 ((𝜑𝑘 = 1) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = (2 · 1))
8988, 16eqtrdi 2789 . . . . . . . 8 ((𝜑𝑘 = 1) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = 2)
9062, 89oveq12d 7189 . . . . . . 7 ((𝜑𝑘 = 1) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = (2 − 2))
91 2cn 11792 . . . . . . . 8 2 ∈ ℂ
9291subidi 11036 . . . . . . 7 (2 − 2) = 0
9390, 92eqtrdi 2789 . . . . . 6 ((𝜑𝑘 = 1) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
9445nnrpd 12513 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℝ+)
9594adantr 484 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) ∈ ℝ+)
96 eluzge2nn0 12370 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℕ0)
97 nnexpcl 13535 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ)
9810, 96, 97syl2an 599 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃𝑘) ∈ ℕ)
9998nnrpd 12513 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃𝑘) ∈ ℝ+)
10095, 99rpdivcld 12532 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ+)
101100rpge0d 12519 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → 0 ≤ ((2 · 𝑁) / (𝑃𝑘)))
10246adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) ∈ ℝ)
103 remulcl 10701 . . . . . . . . . . . . . . 15 ((3 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (3 · 𝑃) ∈ ℝ)
10447, 22, 103sylancr 590 . . . . . . . . . . . . . 14 (𝜑 → (3 · 𝑃) ∈ ℝ)
105104adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (3 · 𝑃) ∈ ℝ)
10698nnred 11732 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃𝑘) ∈ ℝ)
107 ltdivmul 11594 . . . . . . . . . . . . . . . . 17 (((2 · 𝑁) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (((2 · 𝑁) / 3) < 𝑃 ↔ (2 · 𝑁) < (3 · 𝑃)))
10849, 107mp3an3 1451 . . . . . . . . . . . . . . . 16 (((2 · 𝑁) ∈ ℝ ∧ 𝑃 ∈ ℝ) → (((2 · 𝑁) / 3) < 𝑃 ↔ (2 · 𝑁) < (3 · 𝑃)))
10946, 22, 108syl2anc 587 . . . . . . . . . . . . . . 15 (𝜑 → (((2 · 𝑁) / 3) < 𝑃 ↔ (2 · 𝑁) < (3 · 𝑃)))
11042, 109mpbid 235 . . . . . . . . . . . . . 14 (𝜑 → (2 · 𝑁) < (3 · 𝑃))
111110adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) < (3 · 𝑃))
11222, 22remulcld 10750 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃 · 𝑃) ∈ ℝ)
113112adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃 · 𝑃) ∈ ℝ)
114 bposlem2.3 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 < 𝑃)
115 nnltp1le 12120 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (2 < 𝑃 ↔ (2 + 1) ≤ 𝑃))
11643, 10, 115sylancr 590 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 < 𝑃 ↔ (2 + 1) ≤ 𝑃))
117114, 116mpbid 235 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 + 1) ≤ 𝑃)
11854, 117eqbrtrid 5066 . . . . . . . . . . . . . . . 16 (𝜑 → 3 ≤ 𝑃)
119 lemul1 11571 . . . . . . . . . . . . . . . . . 18 ((3 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (3 ≤ 𝑃 ↔ (3 · 𝑃) ≤ (𝑃 · 𝑃)))
12047, 119mp3an1 1449 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (3 ≤ 𝑃 ↔ (3 · 𝑃) ≤ (𝑃 · 𝑃)))
12122, 22, 23, 120syl12anc 836 . . . . . . . . . . . . . . . 16 (𝜑 → (3 ≤ 𝑃 ↔ (3 · 𝑃) ≤ (𝑃 · 𝑃)))
122118, 121mpbid 235 . . . . . . . . . . . . . . 15 (𝜑 → (3 · 𝑃) ≤ (𝑃 · 𝑃))
123122adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → (3 · 𝑃) ≤ (𝑃 · 𝑃))
12411sqvald 13600 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃↑2) = (𝑃 · 𝑃))
125124adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃↑2) = (𝑃 · 𝑃))
12622adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑃 ∈ ℝ)
12710nnge1d 11765 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≤ 𝑃)
128127adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘2)) → 1 ≤ 𝑃)
129 simpr 488 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑘 ∈ (ℤ‘2))
130126, 128, 129leexp2ad 13710 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃↑2) ≤ (𝑃𝑘))
131125, 130eqbrtrrd 5055 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃 · 𝑃) ≤ (𝑃𝑘))
132105, 113, 106, 123, 131letrd 10876 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (3 · 𝑃) ≤ (𝑃𝑘))
133102, 105, 106, 111, 132ltletrd 10879 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) < (𝑃𝑘))
13498nncnd 11733 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃𝑘) ∈ ℂ)
135134mulid1d 10737 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → ((𝑃𝑘) · 1) = (𝑃𝑘))
136133, 135breqtrrd 5059 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) < ((𝑃𝑘) · 1))
137 1red 10721 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → 1 ∈ ℝ)
138102, 137, 99ltdivmuld 12566 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (((2 · 𝑁) / (𝑃𝑘)) < 1 ↔ (2 · 𝑁) < ((𝑃𝑘) · 1)))
139136, 138mpbird 260 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → ((2 · 𝑁) / (𝑃𝑘)) < 1)
140 1e0p1 12222 . . . . . . . . . 10 1 = (0 + 1)
141139, 140breqtrdi 5072 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))
142100rpred 12515 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ)
143 0z 12074 . . . . . . . . . 10 0 ∈ ℤ
144 flbi 13278 . . . . . . . . . 10 ((((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0 ↔ (0 ≤ ((2 · 𝑁) / (𝑃𝑘)) ∧ ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))))
145142, 143, 144sylancl 589 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0 ↔ (0 ≤ ((2 · 𝑁) / (𝑃𝑘)) ∧ ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))))
146101, 141, 145mpbir2and 713 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘2)) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0)
1471nnrpd 12513 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ+)
148147adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 ∈ ℝ+)
149148, 99rpdivcld 12532 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑁 / (𝑃𝑘)) ∈ ℝ+)
150149rpge0d 12519 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → 0 ≤ (𝑁 / (𝑃𝑘)))
15121adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 ∈ ℝ)
15221, 147ltaddrpd 12548 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 < (𝑁 + 𝑁))
153382timesd 11960 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁))
154152, 153breqtrrd 5059 . . . . . . . . . . . . . . . 16 (𝜑𝑁 < (2 · 𝑁))
155154adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 < (2 · 𝑁))
156151, 102, 106, 155, 133lttrd 10880 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 < (𝑃𝑘))
157156, 135breqtrrd 5059 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 < ((𝑃𝑘) · 1))
158151, 137, 99ltdivmuld 12566 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → ((𝑁 / (𝑃𝑘)) < 1 ↔ 𝑁 < ((𝑃𝑘) · 1)))
159157, 158mpbird 260 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑁 / (𝑃𝑘)) < 1)
160159, 140breqtrdi 5072 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑁 / (𝑃𝑘)) < (0 + 1))
161149rpred 12515 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
162 flbi 13278 . . . . . . . . . . . 12 (((𝑁 / (𝑃𝑘)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (𝑃𝑘))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑘)) ∧ (𝑁 / (𝑃𝑘)) < (0 + 1))))
163161, 143, 162sylancl 589 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → ((⌊‘(𝑁 / (𝑃𝑘))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑘)) ∧ (𝑁 / (𝑃𝑘)) < (0 + 1))))
164150, 160, 163mpbir2and 713 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → (⌊‘(𝑁 / (𝑃𝑘))) = 0)
165164oveq2d 7187 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = (2 · 0))
166 2t0e0 11886 . . . . . . . . 9 (2 · 0) = 0
167165, 166eqtrdi 2789 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = 0)
168146, 167oveq12d 7189 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘2)) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = (0 − 0))
169 0m0e0 11837 . . . . . . 7 (0 − 0) = 0
170168, 169eqtrdi 2789 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘2)) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
17193, 170jaodan 957 . . . . 5 ((𝜑 ∧ (𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
1727, 171sylan2 596 . . . 4 ((𝜑𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
173172sumeq2dv 15154 . . 3 (𝜑 → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = Σ𝑘 ∈ (1...(2 · 𝑁))0)
174 fzfid 13433 . . . 4 (𝜑 → (1...(2 · 𝑁)) ∈ Fin)
175 sumz 15173 . . . . 5 (((1...(2 · 𝑁)) ⊆ (ℤ‘1) ∨ (1...(2 · 𝑁)) ∈ Fin) → Σ𝑘 ∈ (1...(2 · 𝑁))0 = 0)
176175olcs 875 . . . 4 ((1...(2 · 𝑁)) ∈ Fin → Σ𝑘 ∈ (1...(2 · 𝑁))0 = 0)
177174, 176syl 17 . . 3 (𝜑 → Σ𝑘 ∈ (1...(2 · 𝑁))0 = 0)
178173, 177eqtrd 2773 . 2 (𝜑 → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
1794, 178eqtrd 2773 1 (𝜑 → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 846   = wceq 1542  wcel 2113  wss 3844   class class class wbr 5031  cfv 6340  (class class class)co 7171  Fincfn 8556  cr 10615  0cc0 10616  1c1 10617   + caddc 10619   · cmul 10621   < clt 10754  cle 10755  cmin 10949   / cdiv 11376  cn 11717  2c2 11772  3c3 11773  4c4 11774  0cn0 11977  cz 12063  cuz 12325  +crp 12473  ...cfz 12982  cfl 13252  cexp 13522  Ccbc 13755  Σcsu 15136  cprime 16113   pCnt cpc 16274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480  ax-inf2 9178  ax-cnex 10672  ax-resscn 10673  ax-1cn 10674  ax-icn 10675  ax-addcl 10676  ax-addrcl 10677  ax-mulcl 10678  ax-mulrcl 10679  ax-mulcom 10680  ax-addass 10681  ax-mulass 10682  ax-distr 10683  ax-i2m1 10684  ax-1ne0 10685  ax-1rid 10686  ax-rnegex 10687  ax-rrecex 10688  ax-cnre 10689  ax-pre-lttri 10690  ax-pre-lttrn 10691  ax-pre-ltadd 10692  ax-pre-mulgt0 10693  ax-pre-sup 10694
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-se 5485  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7128  df-ov 7174  df-oprab 7175  df-mpo 7176  df-om 7601  df-1st 7715  df-2nd 7716  df-wrecs 7977  df-recs 8038  df-rdg 8076  df-1o 8132  df-2o 8133  df-er 8321  df-en 8557  df-dom 8558  df-sdom 8559  df-fin 8560  df-sup 8980  df-inf 8981  df-oi 9048  df-card 9442  df-pnf 10756  df-mnf 10757  df-xr 10758  df-ltxr 10759  df-le 10760  df-sub 10951  df-neg 10952  df-div 11377  df-nn 11718  df-2 11780  df-3 11781  df-4 11782  df-n0 11978  df-z 12064  df-uz 12326  df-q 12432  df-rp 12474  df-fz 12983  df-fzo 13126  df-fl 13254  df-mod 13330  df-seq 13462  df-exp 13523  df-fac 13727  df-bc 13756  df-hash 13784  df-cj 14549  df-re 14550  df-im 14551  df-sqrt 14685  df-abs 14686  df-clim 14936  df-sum 15137  df-dvds 15701  df-gcd 15939  df-prm 16114  df-pc 16275
This theorem is referenced by:  bposlem3  26022
  Copyright terms: Public domain W3C validator