MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem2 Structured version   Visualization version   GIF version

Theorem bposlem2 25864
Description: There are no odd primes in the range (2𝑁 / 3, 𝑁] dividing the 𝑁-th central binomial coefficient. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
bposlem2.1 (𝜑𝑁 ∈ ℕ)
bposlem2.2 (𝜑𝑃 ∈ ℙ)
bposlem2.3 (𝜑 → 2 < 𝑃)
bposlem2.4 (𝜑 → ((2 · 𝑁) / 3) < 𝑃)
bposlem2.5 (𝜑𝑃𝑁)
Assertion
Ref Expression
bposlem2 (𝜑 → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = 0)

Proof of Theorem bposlem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 bposlem2.1 . . 3 (𝜑𝑁 ∈ ℕ)
2 bposlem2.2 . . 3 (𝜑𝑃 ∈ ℙ)
3 pcbcctr 25855 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
41, 2, 3syl2anc 586 . 2 (𝜑 → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
5 elfznn 12939 . . . . . 6 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ)
6 elnn1uz2 12328 . . . . . 6 (𝑘 ∈ ℕ ↔ (𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2)))
75, 6sylib 220 . . . . 5 (𝑘 ∈ (1...(2 · 𝑁)) → (𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2)))
8 oveq2 7167 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑃𝑘) = (𝑃↑1))
9 prmnn 16021 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
102, 9syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
1110nncnd 11657 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℂ)
1211exp1d 13508 . . . . . . . . . . . 12 (𝜑 → (𝑃↑1) = 𝑃)
138, 12sylan9eqr 2881 . . . . . . . . . . 11 ((𝜑𝑘 = 1) → (𝑃𝑘) = 𝑃)
1413oveq2d 7175 . . . . . . . . . 10 ((𝜑𝑘 = 1) → ((2 · 𝑁) / (𝑃𝑘)) = ((2 · 𝑁) / 𝑃))
1514fveq2d 6677 . . . . . . . . 9 ((𝜑𝑘 = 1) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) = (⌊‘((2 · 𝑁) / 𝑃)))
16 2t1e2 11803 . . . . . . . . . . . . 13 (2 · 1) = 2
1711mulid2d 10662 . . . . . . . . . . . . . . . 16 (𝜑 → (1 · 𝑃) = 𝑃)
18 bposlem2.5 . . . . . . . . . . . . . . . 16 (𝜑𝑃𝑁)
1917, 18eqbrtrd 5091 . . . . . . . . . . . . . . 15 (𝜑 → (1 · 𝑃) ≤ 𝑁)
20 1red 10645 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
211nnred 11656 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
2210nnred 11656 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℝ)
2310nngt0d 11689 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝑃)
24 lemuldiv 11523 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → ((1 · 𝑃) ≤ 𝑁 ↔ 1 ≤ (𝑁 / 𝑃)))
2520, 21, 22, 23, 24syl112anc 1370 . . . . . . . . . . . . . . 15 (𝜑 → ((1 · 𝑃) ≤ 𝑁 ↔ 1 ≤ (𝑁 / 𝑃)))
2619, 25mpbid 234 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ (𝑁 / 𝑃))
2721, 10nndivred 11694 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 / 𝑃) ∈ ℝ)
28 1re 10644 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
29 2re 11714 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
30 2pos 11743 . . . . . . . . . . . . . . . . 17 0 < 2
3129, 30pm3.2i 473 . . . . . . . . . . . . . . . 16 (2 ∈ ℝ ∧ 0 < 2)
32 lemul2 11496 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑁 / 𝑃) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (1 ≤ (𝑁 / 𝑃) ↔ (2 · 1) ≤ (2 · (𝑁 / 𝑃))))
3328, 31, 32mp3an13 1448 . . . . . . . . . . . . . . 15 ((𝑁 / 𝑃) ∈ ℝ → (1 ≤ (𝑁 / 𝑃) ↔ (2 · 1) ≤ (2 · (𝑁 / 𝑃))))
3427, 33syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1 ≤ (𝑁 / 𝑃) ↔ (2 · 1) ≤ (2 · (𝑁 / 𝑃))))
3526, 34mpbid 234 . . . . . . . . . . . . 13 (𝜑 → (2 · 1) ≤ (2 · (𝑁 / 𝑃)))
3616, 35eqbrtrrid 5105 . . . . . . . . . . . 12 (𝜑 → 2 ≤ (2 · (𝑁 / 𝑃)))
37 2cnd 11718 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℂ)
381nncnd 11657 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
3910nnne0d 11690 . . . . . . . . . . . . 13 (𝜑𝑃 ≠ 0)
4037, 38, 11, 39divassd 11454 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) / 𝑃) = (2 · (𝑁 / 𝑃)))
4136, 40breqtrrd 5097 . . . . . . . . . . 11 (𝜑 → 2 ≤ ((2 · 𝑁) / 𝑃))
42 bposlem2.4 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝑁) / 3) < 𝑃)
43 2nn 11713 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
44 nnmulcl 11664 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
4543, 1, 44sylancr 589 . . . . . . . . . . . . . . 15 (𝜑 → (2 · 𝑁) ∈ ℕ)
4645nnred 11656 . . . . . . . . . . . . . 14 (𝜑 → (2 · 𝑁) ∈ ℝ)
47 3re 11720 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
48 3pos 11745 . . . . . . . . . . . . . . . 16 0 < 3
4947, 48pm3.2i 473 . . . . . . . . . . . . . . 15 (3 ∈ ℝ ∧ 0 < 3)
50 ltdiv23 11534 . . . . . . . . . . . . . . 15 (((2 · 𝑁) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (((2 · 𝑁) / 3) < 𝑃 ↔ ((2 · 𝑁) / 𝑃) < 3))
5149, 50mp3an2 1445 . . . . . . . . . . . . . 14 (((2 · 𝑁) ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (((2 · 𝑁) / 3) < 𝑃 ↔ ((2 · 𝑁) / 𝑃) < 3))
5246, 22, 23, 51syl12anc 834 . . . . . . . . . . . . 13 (𝜑 → (((2 · 𝑁) / 3) < 𝑃 ↔ ((2 · 𝑁) / 𝑃) < 3))
5342, 52mpbid 234 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) / 𝑃) < 3)
54 df-3 11704 . . . . . . . . . . . 12 3 = (2 + 1)
5553, 54breqtrdi 5110 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) / 𝑃) < (2 + 1))
5646, 10nndivred 11694 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) / 𝑃) ∈ ℝ)
57 2z 12017 . . . . . . . . . . . 12 2 ∈ ℤ
58 flbi 13189 . . . . . . . . . . . 12 ((((2 · 𝑁) / 𝑃) ∈ ℝ ∧ 2 ∈ ℤ) → ((⌊‘((2 · 𝑁) / 𝑃)) = 2 ↔ (2 ≤ ((2 · 𝑁) / 𝑃) ∧ ((2 · 𝑁) / 𝑃) < (2 + 1))))
5956, 57, 58sylancl 588 . . . . . . . . . . 11 (𝜑 → ((⌊‘((2 · 𝑁) / 𝑃)) = 2 ↔ (2 ≤ ((2 · 𝑁) / 𝑃) ∧ ((2 · 𝑁) / 𝑃) < (2 + 1))))
6041, 55, 59mpbir2and 711 . . . . . . . . . 10 (𝜑 → (⌊‘((2 · 𝑁) / 𝑃)) = 2)
6160adantr 483 . . . . . . . . 9 ((𝜑𝑘 = 1) → (⌊‘((2 · 𝑁) / 𝑃)) = 2)
6215, 61eqtrd 2859 . . . . . . . 8 ((𝜑𝑘 = 1) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) = 2)
6313oveq2d 7175 . . . . . . . . . . . 12 ((𝜑𝑘 = 1) → (𝑁 / (𝑃𝑘)) = (𝑁 / 𝑃))
6463fveq2d 6677 . . . . . . . . . . 11 ((𝜑𝑘 = 1) → (⌊‘(𝑁 / (𝑃𝑘))) = (⌊‘(𝑁 / 𝑃)))
65 remulcl 10625 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ (𝑁 / 𝑃) ∈ ℝ) → (2 · (𝑁 / 𝑃)) ∈ ℝ)
6629, 27, 65sylancr 589 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝑁 / 𝑃)) ∈ ℝ)
6747a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ∈ ℝ)
68 4re 11724 . . . . . . . . . . . . . . . . . 18 4 ∈ ℝ
6968a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 4 ∈ ℝ)
7040, 53eqbrtrrd 5093 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝑁 / 𝑃)) < 3)
71 3lt4 11814 . . . . . . . . . . . . . . . . . 18 3 < 4
7271a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 < 4)
7366, 67, 69, 70, 72lttrd 10804 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · (𝑁 / 𝑃)) < 4)
74 2t2e4 11804 . . . . . . . . . . . . . . . 16 (2 · 2) = 4
7573, 74breqtrrdi 5111 . . . . . . . . . . . . . . 15 (𝜑 → (2 · (𝑁 / 𝑃)) < (2 · 2))
76 ltmul2 11494 . . . . . . . . . . . . . . . . 17 (((𝑁 / 𝑃) ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑁 / 𝑃) < 2 ↔ (2 · (𝑁 / 𝑃)) < (2 · 2)))
7729, 31, 76mp3an23 1449 . . . . . . . . . . . . . . . 16 ((𝑁 / 𝑃) ∈ ℝ → ((𝑁 / 𝑃) < 2 ↔ (2 · (𝑁 / 𝑃)) < (2 · 2)))
7827, 77syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 / 𝑃) < 2 ↔ (2 · (𝑁 / 𝑃)) < (2 · 2)))
7975, 78mpbird 259 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 / 𝑃) < 2)
80 df-2 11703 . . . . . . . . . . . . . 14 2 = (1 + 1)
8179, 80breqtrdi 5110 . . . . . . . . . . . . 13 (𝜑 → (𝑁 / 𝑃) < (1 + 1))
82 1z 12015 . . . . . . . . . . . . . 14 1 ∈ ℤ
83 flbi 13189 . . . . . . . . . . . . . 14 (((𝑁 / 𝑃) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(𝑁 / 𝑃)) = 1 ↔ (1 ≤ (𝑁 / 𝑃) ∧ (𝑁 / 𝑃) < (1 + 1))))
8427, 82, 83sylancl 588 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘(𝑁 / 𝑃)) = 1 ↔ (1 ≤ (𝑁 / 𝑃) ∧ (𝑁 / 𝑃) < (1 + 1))))
8526, 81, 84mpbir2and 711 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑁 / 𝑃)) = 1)
8685adantr 483 . . . . . . . . . . 11 ((𝜑𝑘 = 1) → (⌊‘(𝑁 / 𝑃)) = 1)
8764, 86eqtrd 2859 . . . . . . . . . 10 ((𝜑𝑘 = 1) → (⌊‘(𝑁 / (𝑃𝑘))) = 1)
8887oveq2d 7175 . . . . . . . . 9 ((𝜑𝑘 = 1) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = (2 · 1))
8988, 16syl6eq 2875 . . . . . . . 8 ((𝜑𝑘 = 1) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = 2)
9062, 89oveq12d 7177 . . . . . . 7 ((𝜑𝑘 = 1) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = (2 − 2))
91 2cn 11715 . . . . . . . 8 2 ∈ ℂ
9291subidi 10960 . . . . . . 7 (2 − 2) = 0
9390, 92syl6eq 2875 . . . . . 6 ((𝜑𝑘 = 1) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
9445nnrpd 12432 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℝ+)
9594adantr 483 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) ∈ ℝ+)
96 eluzge2nn0 12290 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℕ0)
97 nnexpcl 13445 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ)
9810, 96, 97syl2an 597 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃𝑘) ∈ ℕ)
9998nnrpd 12432 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃𝑘) ∈ ℝ+)
10095, 99rpdivcld 12451 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ+)
101100rpge0d 12438 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → 0 ≤ ((2 · 𝑁) / (𝑃𝑘)))
10246adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) ∈ ℝ)
103 remulcl 10625 . . . . . . . . . . . . . . 15 ((3 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (3 · 𝑃) ∈ ℝ)
10447, 22, 103sylancr 589 . . . . . . . . . . . . . 14 (𝜑 → (3 · 𝑃) ∈ ℝ)
105104adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (3 · 𝑃) ∈ ℝ)
10698nnred 11656 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃𝑘) ∈ ℝ)
107 ltdivmul 11518 . . . . . . . . . . . . . . . . 17 (((2 · 𝑁) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (((2 · 𝑁) / 3) < 𝑃 ↔ (2 · 𝑁) < (3 · 𝑃)))
10849, 107mp3an3 1446 . . . . . . . . . . . . . . . 16 (((2 · 𝑁) ∈ ℝ ∧ 𝑃 ∈ ℝ) → (((2 · 𝑁) / 3) < 𝑃 ↔ (2 · 𝑁) < (3 · 𝑃)))
10946, 22, 108syl2anc 586 . . . . . . . . . . . . . . 15 (𝜑 → (((2 · 𝑁) / 3) < 𝑃 ↔ (2 · 𝑁) < (3 · 𝑃)))
11042, 109mpbid 234 . . . . . . . . . . . . . 14 (𝜑 → (2 · 𝑁) < (3 · 𝑃))
111110adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) < (3 · 𝑃))
11222, 22remulcld 10674 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃 · 𝑃) ∈ ℝ)
113112adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃 · 𝑃) ∈ ℝ)
114 bposlem2.3 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 < 𝑃)
115 nnltp1le 12041 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (2 < 𝑃 ↔ (2 + 1) ≤ 𝑃))
11643, 10, 115sylancr 589 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 < 𝑃 ↔ (2 + 1) ≤ 𝑃))
117114, 116mpbid 234 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 + 1) ≤ 𝑃)
11854, 117eqbrtrid 5104 . . . . . . . . . . . . . . . 16 (𝜑 → 3 ≤ 𝑃)
119 lemul1 11495 . . . . . . . . . . . . . . . . . 18 ((3 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (3 ≤ 𝑃 ↔ (3 · 𝑃) ≤ (𝑃 · 𝑃)))
12047, 119mp3an1 1444 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (3 ≤ 𝑃 ↔ (3 · 𝑃) ≤ (𝑃 · 𝑃)))
12122, 22, 23, 120syl12anc 834 . . . . . . . . . . . . . . . 16 (𝜑 → (3 ≤ 𝑃 ↔ (3 · 𝑃) ≤ (𝑃 · 𝑃)))
122118, 121mpbid 234 . . . . . . . . . . . . . . 15 (𝜑 → (3 · 𝑃) ≤ (𝑃 · 𝑃))
123122adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → (3 · 𝑃) ≤ (𝑃 · 𝑃))
12411sqvald 13510 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃↑2) = (𝑃 · 𝑃))
125124adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃↑2) = (𝑃 · 𝑃))
12622adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑃 ∈ ℝ)
12710nnge1d 11688 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≤ 𝑃)
128127adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘2)) → 1 ≤ 𝑃)
129 simpr 487 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑘 ∈ (ℤ‘2))
130126, 128, 129leexp2ad 13620 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃↑2) ≤ (𝑃𝑘))
131125, 130eqbrtrrd 5093 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃 · 𝑃) ≤ (𝑃𝑘))
132105, 113, 106, 123, 131letrd 10800 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (3 · 𝑃) ≤ (𝑃𝑘))
133102, 105, 106, 111, 132ltletrd 10803 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) < (𝑃𝑘))
13498nncnd 11657 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃𝑘) ∈ ℂ)
135134mulid1d 10661 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → ((𝑃𝑘) · 1) = (𝑃𝑘))
136133, 135breqtrrd 5097 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) < ((𝑃𝑘) · 1))
137 1red 10645 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → 1 ∈ ℝ)
138102, 137, 99ltdivmuld 12485 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (((2 · 𝑁) / (𝑃𝑘)) < 1 ↔ (2 · 𝑁) < ((𝑃𝑘) · 1)))
139136, 138mpbird 259 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → ((2 · 𝑁) / (𝑃𝑘)) < 1)
140 1e0p1 12143 . . . . . . . . . 10 1 = (0 + 1)
141139, 140breqtrdi 5110 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))
142100rpred 12434 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ)
143 0z 11995 . . . . . . . . . 10 0 ∈ ℤ
144 flbi 13189 . . . . . . . . . 10 ((((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0 ↔ (0 ≤ ((2 · 𝑁) / (𝑃𝑘)) ∧ ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))))
145142, 143, 144sylancl 588 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0 ↔ (0 ≤ ((2 · 𝑁) / (𝑃𝑘)) ∧ ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))))
146101, 141, 145mpbir2and 711 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘2)) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0)
1471nnrpd 12432 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ+)
148147adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 ∈ ℝ+)
149148, 99rpdivcld 12451 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑁 / (𝑃𝑘)) ∈ ℝ+)
150149rpge0d 12438 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → 0 ≤ (𝑁 / (𝑃𝑘)))
15121adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 ∈ ℝ)
15221, 147ltaddrpd 12467 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 < (𝑁 + 𝑁))
153382timesd 11883 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁))
154152, 153breqtrrd 5097 . . . . . . . . . . . . . . . 16 (𝜑𝑁 < (2 · 𝑁))
155154adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 < (2 · 𝑁))
156151, 102, 106, 155, 133lttrd 10804 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 < (𝑃𝑘))
157156, 135breqtrrd 5097 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 < ((𝑃𝑘) · 1))
158151, 137, 99ltdivmuld 12485 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → ((𝑁 / (𝑃𝑘)) < 1 ↔ 𝑁 < ((𝑃𝑘) · 1)))
159157, 158mpbird 259 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑁 / (𝑃𝑘)) < 1)
160159, 140breqtrdi 5110 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑁 / (𝑃𝑘)) < (0 + 1))
161149rpred 12434 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
162 flbi 13189 . . . . . . . . . . . 12 (((𝑁 / (𝑃𝑘)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (𝑃𝑘))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑘)) ∧ (𝑁 / (𝑃𝑘)) < (0 + 1))))
163161, 143, 162sylancl 588 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → ((⌊‘(𝑁 / (𝑃𝑘))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑘)) ∧ (𝑁 / (𝑃𝑘)) < (0 + 1))))
164150, 160, 163mpbir2and 711 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → (⌊‘(𝑁 / (𝑃𝑘))) = 0)
165164oveq2d 7175 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = (2 · 0))
166 2t0e0 11809 . . . . . . . . 9 (2 · 0) = 0
167165, 166syl6eq 2875 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = 0)
168146, 167oveq12d 7177 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘2)) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = (0 − 0))
169 0m0e0 11760 . . . . . . 7 (0 − 0) = 0
170168, 169syl6eq 2875 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘2)) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
17193, 170jaodan 954 . . . . 5 ((𝜑 ∧ (𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
1727, 171sylan2 594 . . . 4 ((𝜑𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
173172sumeq2dv 15063 . . 3 (𝜑 → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = Σ𝑘 ∈ (1...(2 · 𝑁))0)
174 fzfid 13344 . . . 4 (𝜑 → (1...(2 · 𝑁)) ∈ Fin)
175 sumz 15082 . . . . 5 (((1...(2 · 𝑁)) ⊆ (ℤ‘1) ∨ (1...(2 · 𝑁)) ∈ Fin) → Σ𝑘 ∈ (1...(2 · 𝑁))0 = 0)
176175olcs 872 . . . 4 ((1...(2 · 𝑁)) ∈ Fin → Σ𝑘 ∈ (1...(2 · 𝑁))0 = 0)
177174, 176syl 17 . . 3 (𝜑 → Σ𝑘 ∈ (1...(2 · 𝑁))0 = 0)
178173, 177eqtrd 2859 . 2 (𝜑 → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
1794, 178eqtrd 2859 1 (𝜑 → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1536  wcel 2113  wss 3939   class class class wbr 5069  cfv 6358  (class class class)co 7159  Fincfn 8512  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545   < clt 10678  cle 10679  cmin 10873   / cdiv 11300  cn 11641  2c2 11695  3c3 11696  4c4 11697  0cn0 11900  cz 11984  cuz 12246  +crp 12392  ...cfz 12895  cfl 13163  cexp 13432  Ccbc 13665  Σcsu 15045  cprime 16018   pCnt cpc 16176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-dvds 15611  df-gcd 15847  df-prm 16019  df-pc 16177
This theorem is referenced by:  bposlem3  25865
  Copyright terms: Public domain W3C validator