MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem2 Structured version   Visualization version   GIF version

Theorem bposlem2 25315
Description: There are no odd primes in the range (2𝑁 / 3, 𝑁] dividing the 𝑁-th central binomial coefficient. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
bposlem2.1 (𝜑𝑁 ∈ ℕ)
bposlem2.2 (𝜑𝑃 ∈ ℙ)
bposlem2.3 (𝜑 → 2 < 𝑃)
bposlem2.4 (𝜑 → ((2 · 𝑁) / 3) < 𝑃)
bposlem2.5 (𝜑𝑃𝑁)
Assertion
Ref Expression
bposlem2 (𝜑 → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = 0)

Proof of Theorem bposlem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 bposlem2.1 . . 3 (𝜑𝑁 ∈ ℕ)
2 bposlem2.2 . . 3 (𝜑𝑃 ∈ ℙ)
3 pcbcctr 25306 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
41, 2, 3syl2anc 579 . 2 (𝜑 → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
5 elfznn 12582 . . . . . 6 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ)
6 elnn1uz2 11971 . . . . . 6 (𝑘 ∈ ℕ ↔ (𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2)))
75, 6sylib 209 . . . . 5 (𝑘 ∈ (1...(2 · 𝑁)) → (𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2)))
8 oveq2 6854 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑃𝑘) = (𝑃↑1))
9 prmnn 15682 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
102, 9syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
1110nncnd 11296 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℂ)
1211exp1d 13215 . . . . . . . . . . . 12 (𝜑 → (𝑃↑1) = 𝑃)
138, 12sylan9eqr 2821 . . . . . . . . . . 11 ((𝜑𝑘 = 1) → (𝑃𝑘) = 𝑃)
1413oveq2d 6862 . . . . . . . . . 10 ((𝜑𝑘 = 1) → ((2 · 𝑁) / (𝑃𝑘)) = ((2 · 𝑁) / 𝑃))
1514fveq2d 6383 . . . . . . . . 9 ((𝜑𝑘 = 1) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) = (⌊‘((2 · 𝑁) / 𝑃)))
16 2t1e2 11445 . . . . . . . . . . . . 13 (2 · 1) = 2
1711mulid2d 10316 . . . . . . . . . . . . . . . 16 (𝜑 → (1 · 𝑃) = 𝑃)
18 bposlem2.5 . . . . . . . . . . . . . . . 16 (𝜑𝑃𝑁)
1917, 18eqbrtrd 4833 . . . . . . . . . . . . . . 15 (𝜑 → (1 · 𝑃) ≤ 𝑁)
20 1red 10298 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
211nnred 11295 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
2210nnred 11295 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℝ)
2310nngt0d 11325 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝑃)
24 lemuldiv 11161 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → ((1 · 𝑃) ≤ 𝑁 ↔ 1 ≤ (𝑁 / 𝑃)))
2520, 21, 22, 23, 24syl112anc 1493 . . . . . . . . . . . . . . 15 (𝜑 → ((1 · 𝑃) ≤ 𝑁 ↔ 1 ≤ (𝑁 / 𝑃)))
2619, 25mpbid 223 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ (𝑁 / 𝑃))
2721, 10nndivred 11330 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 / 𝑃) ∈ ℝ)
28 1re 10297 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
29 2re 11350 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
30 2pos 11386 . . . . . . . . . . . . . . . . 17 0 < 2
3129, 30pm3.2i 462 . . . . . . . . . . . . . . . 16 (2 ∈ ℝ ∧ 0 < 2)
32 lemul2 11134 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑁 / 𝑃) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (1 ≤ (𝑁 / 𝑃) ↔ (2 · 1) ≤ (2 · (𝑁 / 𝑃))))
3328, 31, 32mp3an13 1576 . . . . . . . . . . . . . . 15 ((𝑁 / 𝑃) ∈ ℝ → (1 ≤ (𝑁 / 𝑃) ↔ (2 · 1) ≤ (2 · (𝑁 / 𝑃))))
3427, 33syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1 ≤ (𝑁 / 𝑃) ↔ (2 · 1) ≤ (2 · (𝑁 / 𝑃))))
3526, 34mpbid 223 . . . . . . . . . . . . 13 (𝜑 → (2 · 1) ≤ (2 · (𝑁 / 𝑃)))
3616, 35syl5eqbrr 4847 . . . . . . . . . . . 12 (𝜑 → 2 ≤ (2 · (𝑁 / 𝑃)))
37 2cnd 11354 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℂ)
381nncnd 11296 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
3910nnne0d 11326 . . . . . . . . . . . . 13 (𝜑𝑃 ≠ 0)
4037, 38, 11, 39divassd 11094 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) / 𝑃) = (2 · (𝑁 / 𝑃)))
4136, 40breqtrrd 4839 . . . . . . . . . . 11 (𝜑 → 2 ≤ ((2 · 𝑁) / 𝑃))
42 bposlem2.4 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝑁) / 3) < 𝑃)
43 2nn 11349 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
44 nnmulcl 11303 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
4543, 1, 44sylancr 581 . . . . . . . . . . . . . . 15 (𝜑 → (2 · 𝑁) ∈ ℕ)
4645nnred 11295 . . . . . . . . . . . . . 14 (𝜑 → (2 · 𝑁) ∈ ℝ)
47 3re 11356 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
48 3pos 11388 . . . . . . . . . . . . . . . 16 0 < 3
4947, 48pm3.2i 462 . . . . . . . . . . . . . . 15 (3 ∈ ℝ ∧ 0 < 3)
50 ltdiv23 11172 . . . . . . . . . . . . . . 15 (((2 · 𝑁) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (((2 · 𝑁) / 3) < 𝑃 ↔ ((2 · 𝑁) / 𝑃) < 3))
5149, 50mp3an2 1573 . . . . . . . . . . . . . 14 (((2 · 𝑁) ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (((2 · 𝑁) / 3) < 𝑃 ↔ ((2 · 𝑁) / 𝑃) < 3))
5246, 22, 23, 51syl12anc 865 . . . . . . . . . . . . 13 (𝜑 → (((2 · 𝑁) / 3) < 𝑃 ↔ ((2 · 𝑁) / 𝑃) < 3))
5342, 52mpbid 223 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) / 𝑃) < 3)
54 df-3 11340 . . . . . . . . . . . 12 3 = (2 + 1)
5553, 54syl6breq 4852 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) / 𝑃) < (2 + 1))
5646, 10nndivred 11330 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) / 𝑃) ∈ ℝ)
57 2z 11661 . . . . . . . . . . . 12 2 ∈ ℤ
58 flbi 12830 . . . . . . . . . . . 12 ((((2 · 𝑁) / 𝑃) ∈ ℝ ∧ 2 ∈ ℤ) → ((⌊‘((2 · 𝑁) / 𝑃)) = 2 ↔ (2 ≤ ((2 · 𝑁) / 𝑃) ∧ ((2 · 𝑁) / 𝑃) < (2 + 1))))
5956, 57, 58sylancl 580 . . . . . . . . . . 11 (𝜑 → ((⌊‘((2 · 𝑁) / 𝑃)) = 2 ↔ (2 ≤ ((2 · 𝑁) / 𝑃) ∧ ((2 · 𝑁) / 𝑃) < (2 + 1))))
6041, 55, 59mpbir2and 704 . . . . . . . . . 10 (𝜑 → (⌊‘((2 · 𝑁) / 𝑃)) = 2)
6160adantr 472 . . . . . . . . 9 ((𝜑𝑘 = 1) → (⌊‘((2 · 𝑁) / 𝑃)) = 2)
6215, 61eqtrd 2799 . . . . . . . 8 ((𝜑𝑘 = 1) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) = 2)
6313oveq2d 6862 . . . . . . . . . . . 12 ((𝜑𝑘 = 1) → (𝑁 / (𝑃𝑘)) = (𝑁 / 𝑃))
6463fveq2d 6383 . . . . . . . . . . 11 ((𝜑𝑘 = 1) → (⌊‘(𝑁 / (𝑃𝑘))) = (⌊‘(𝑁 / 𝑃)))
65 remulcl 10278 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ (𝑁 / 𝑃) ∈ ℝ) → (2 · (𝑁 / 𝑃)) ∈ ℝ)
6629, 27, 65sylancr 581 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝑁 / 𝑃)) ∈ ℝ)
6747a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ∈ ℝ)
68 4re 11361 . . . . . . . . . . . . . . . . . 18 4 ∈ ℝ
6968a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 4 ∈ ℝ)
7040, 53eqbrtrrd 4835 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝑁 / 𝑃)) < 3)
71 3lt4 11456 . . . . . . . . . . . . . . . . . 18 3 < 4
7271a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 < 4)
7366, 67, 69, 70, 72lttrd 10456 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · (𝑁 / 𝑃)) < 4)
74 2t2e4 11446 . . . . . . . . . . . . . . . 16 (2 · 2) = 4
7573, 74syl6breqr 4853 . . . . . . . . . . . . . . 15 (𝜑 → (2 · (𝑁 / 𝑃)) < (2 · 2))
76 ltmul2 11132 . . . . . . . . . . . . . . . . 17 (((𝑁 / 𝑃) ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑁 / 𝑃) < 2 ↔ (2 · (𝑁 / 𝑃)) < (2 · 2)))
7729, 31, 76mp3an23 1577 . . . . . . . . . . . . . . . 16 ((𝑁 / 𝑃) ∈ ℝ → ((𝑁 / 𝑃) < 2 ↔ (2 · (𝑁 / 𝑃)) < (2 · 2)))
7827, 77syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 / 𝑃) < 2 ↔ (2 · (𝑁 / 𝑃)) < (2 · 2)))
7975, 78mpbird 248 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 / 𝑃) < 2)
80 df-2 11339 . . . . . . . . . . . . . 14 2 = (1 + 1)
8179, 80syl6breq 4852 . . . . . . . . . . . . 13 (𝜑 → (𝑁 / 𝑃) < (1 + 1))
82 1z 11659 . . . . . . . . . . . . . 14 1 ∈ ℤ
83 flbi 12830 . . . . . . . . . . . . . 14 (((𝑁 / 𝑃) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(𝑁 / 𝑃)) = 1 ↔ (1 ≤ (𝑁 / 𝑃) ∧ (𝑁 / 𝑃) < (1 + 1))))
8427, 82, 83sylancl 580 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘(𝑁 / 𝑃)) = 1 ↔ (1 ≤ (𝑁 / 𝑃) ∧ (𝑁 / 𝑃) < (1 + 1))))
8526, 81, 84mpbir2and 704 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑁 / 𝑃)) = 1)
8685adantr 472 . . . . . . . . . . 11 ((𝜑𝑘 = 1) → (⌊‘(𝑁 / 𝑃)) = 1)
8764, 86eqtrd 2799 . . . . . . . . . 10 ((𝜑𝑘 = 1) → (⌊‘(𝑁 / (𝑃𝑘))) = 1)
8887oveq2d 6862 . . . . . . . . 9 ((𝜑𝑘 = 1) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = (2 · 1))
8988, 16syl6eq 2815 . . . . . . . 8 ((𝜑𝑘 = 1) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = 2)
9062, 89oveq12d 6864 . . . . . . 7 ((𝜑𝑘 = 1) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = (2 − 2))
91 2cn 11351 . . . . . . . 8 2 ∈ ℂ
9291subidi 10610 . . . . . . 7 (2 − 2) = 0
9390, 92syl6eq 2815 . . . . . 6 ((𝜑𝑘 = 1) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
9445nnrpd 12073 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℝ+)
9594adantr 472 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) ∈ ℝ+)
96 eluzge2nn0 11932 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℕ0)
97 nnexpcl 13085 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ)
9810, 96, 97syl2an 589 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃𝑘) ∈ ℕ)
9998nnrpd 12073 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃𝑘) ∈ ℝ+)
10095, 99rpdivcld 12092 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ+)
101100rpge0d 12079 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → 0 ≤ ((2 · 𝑁) / (𝑃𝑘)))
10246adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) ∈ ℝ)
103 remulcl 10278 . . . . . . . . . . . . . . 15 ((3 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (3 · 𝑃) ∈ ℝ)
10447, 22, 103sylancr 581 . . . . . . . . . . . . . 14 (𝜑 → (3 · 𝑃) ∈ ℝ)
105104adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (3 · 𝑃) ∈ ℝ)
10698nnred 11295 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃𝑘) ∈ ℝ)
107 ltdivmul 11156 . . . . . . . . . . . . . . . . 17 (((2 · 𝑁) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (((2 · 𝑁) / 3) < 𝑃 ↔ (2 · 𝑁) < (3 · 𝑃)))
10849, 107mp3an3 1574 . . . . . . . . . . . . . . . 16 (((2 · 𝑁) ∈ ℝ ∧ 𝑃 ∈ ℝ) → (((2 · 𝑁) / 3) < 𝑃 ↔ (2 · 𝑁) < (3 · 𝑃)))
10946, 22, 108syl2anc 579 . . . . . . . . . . . . . . 15 (𝜑 → (((2 · 𝑁) / 3) < 𝑃 ↔ (2 · 𝑁) < (3 · 𝑃)))
11042, 109mpbid 223 . . . . . . . . . . . . . 14 (𝜑 → (2 · 𝑁) < (3 · 𝑃))
111110adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) < (3 · 𝑃))
11222, 22remulcld 10328 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃 · 𝑃) ∈ ℝ)
113112adantr 472 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃 · 𝑃) ∈ ℝ)
114 bposlem2.3 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 < 𝑃)
115 nnltp1le 11685 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (2 < 𝑃 ↔ (2 + 1) ≤ 𝑃))
11643, 10, 115sylancr 581 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 < 𝑃 ↔ (2 + 1) ≤ 𝑃))
117114, 116mpbid 223 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 + 1) ≤ 𝑃)
11854, 117syl5eqbr 4846 . . . . . . . . . . . . . . . 16 (𝜑 → 3 ≤ 𝑃)
119 lemul1 11133 . . . . . . . . . . . . . . . . . 18 ((3 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (3 ≤ 𝑃 ↔ (3 · 𝑃) ≤ (𝑃 · 𝑃)))
12047, 119mp3an1 1572 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (3 ≤ 𝑃 ↔ (3 · 𝑃) ≤ (𝑃 · 𝑃)))
12122, 22, 23, 120syl12anc 865 . . . . . . . . . . . . . . . 16 (𝜑 → (3 ≤ 𝑃 ↔ (3 · 𝑃) ≤ (𝑃 · 𝑃)))
122118, 121mpbid 223 . . . . . . . . . . . . . . 15 (𝜑 → (3 · 𝑃) ≤ (𝑃 · 𝑃))
123122adantr 472 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → (3 · 𝑃) ≤ (𝑃 · 𝑃))
12411sqvald 13217 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃↑2) = (𝑃 · 𝑃))
125124adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃↑2) = (𝑃 · 𝑃))
12622adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑃 ∈ ℝ)
12710nnge1d 11324 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≤ 𝑃)
128127adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘2)) → 1 ≤ 𝑃)
129 simpr 477 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑘 ∈ (ℤ‘2))
130126, 128, 129leexp2ad 13253 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃↑2) ≤ (𝑃𝑘))
131125, 130eqbrtrrd 4835 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃 · 𝑃) ≤ (𝑃𝑘))
132105, 113, 106, 123, 131letrd 10452 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (3 · 𝑃) ≤ (𝑃𝑘))
133102, 105, 106, 111, 132ltletrd 10455 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) < (𝑃𝑘))
13498nncnd 11296 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃𝑘) ∈ ℂ)
135134mulid1d 10315 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → ((𝑃𝑘) · 1) = (𝑃𝑘))
136133, 135breqtrrd 4839 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) < ((𝑃𝑘) · 1))
137 1red 10298 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → 1 ∈ ℝ)
138102, 137, 99ltdivmuld 12126 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (((2 · 𝑁) / (𝑃𝑘)) < 1 ↔ (2 · 𝑁) < ((𝑃𝑘) · 1)))
139136, 138mpbird 248 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → ((2 · 𝑁) / (𝑃𝑘)) < 1)
140 1e0p1 11788 . . . . . . . . . 10 1 = (0 + 1)
141139, 140syl6breq 4852 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))
142100rpred 12075 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ)
143 0z 11639 . . . . . . . . . 10 0 ∈ ℤ
144 flbi 12830 . . . . . . . . . 10 ((((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0 ↔ (0 ≤ ((2 · 𝑁) / (𝑃𝑘)) ∧ ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))))
145142, 143, 144sylancl 580 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0 ↔ (0 ≤ ((2 · 𝑁) / (𝑃𝑘)) ∧ ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))))
146101, 141, 145mpbir2and 704 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘2)) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0)
1471nnrpd 12073 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ+)
148147adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 ∈ ℝ+)
149148, 99rpdivcld 12092 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑁 / (𝑃𝑘)) ∈ ℝ+)
150149rpge0d 12079 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → 0 ≤ (𝑁 / (𝑃𝑘)))
15121adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 ∈ ℝ)
15221, 147ltaddrpd 12108 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 < (𝑁 + 𝑁))
153382timesd 11525 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁))
154152, 153breqtrrd 4839 . . . . . . . . . . . . . . . 16 (𝜑𝑁 < (2 · 𝑁))
155154adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 < (2 · 𝑁))
156151, 102, 106, 155, 133lttrd 10456 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 < (𝑃𝑘))
157156, 135breqtrrd 4839 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 < ((𝑃𝑘) · 1))
158151, 137, 99ltdivmuld 12126 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → ((𝑁 / (𝑃𝑘)) < 1 ↔ 𝑁 < ((𝑃𝑘) · 1)))
159157, 158mpbird 248 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑁 / (𝑃𝑘)) < 1)
160159, 140syl6breq 4852 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑁 / (𝑃𝑘)) < (0 + 1))
161149rpred 12075 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
162 flbi 12830 . . . . . . . . . . . 12 (((𝑁 / (𝑃𝑘)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (𝑃𝑘))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑘)) ∧ (𝑁 / (𝑃𝑘)) < (0 + 1))))
163161, 143, 162sylancl 580 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → ((⌊‘(𝑁 / (𝑃𝑘))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑘)) ∧ (𝑁 / (𝑃𝑘)) < (0 + 1))))
164150, 160, 163mpbir2and 704 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → (⌊‘(𝑁 / (𝑃𝑘))) = 0)
165164oveq2d 6862 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = (2 · 0))
166 2t0e0 11451 . . . . . . . . 9 (2 · 0) = 0
167165, 166syl6eq 2815 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = 0)
168146, 167oveq12d 6864 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘2)) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = (0 − 0))
169 0m0e0 11403 . . . . . . 7 (0 − 0) = 0
170168, 169syl6eq 2815 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘2)) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
17193, 170jaodan 980 . . . . 5 ((𝜑 ∧ (𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
1727, 171sylan2 586 . . . 4 ((𝜑𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
173172sumeq2dv 14732 . . 3 (𝜑 → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = Σ𝑘 ∈ (1...(2 · 𝑁))0)
174 fzfid 12985 . . . 4 (𝜑 → (1...(2 · 𝑁)) ∈ Fin)
175 sumz 14752 . . . . 5 (((1...(2 · 𝑁)) ⊆ (ℤ‘1) ∨ (1...(2 · 𝑁)) ∈ Fin) → Σ𝑘 ∈ (1...(2 · 𝑁))0 = 0)
176175olcs 902 . . . 4 ((1...(2 · 𝑁)) ∈ Fin → Σ𝑘 ∈ (1...(2 · 𝑁))0 = 0)
177174, 176syl 17 . . 3 (𝜑 → Σ𝑘 ∈ (1...(2 · 𝑁))0 = 0)
178173, 177eqtrd 2799 . 2 (𝜑 → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
1794, 178eqtrd 2799 1 (𝜑 → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 873   = wceq 1652  wcel 2155  wss 3734   class class class wbr 4811  cfv 6070  (class class class)co 6846  Fincfn 8164  cr 10192  0cc0 10193  1c1 10194   + caddc 10196   · cmul 10198   < clt 10332  cle 10333  cmin 10524   / cdiv 10942  cn 11278  2c2 11331  3c3 11332  4c4 11333  0cn0 11542  cz 11628  cuz 11891  +crp 12033  ...cfz 12538  cfl 12804  cexp 13072  Ccbc 13298  Σcsu 14715  cprime 15679   pCnt cpc 15834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-er 7951  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-4 11341  df-n0 11543  df-z 11629  df-uz 11892  df-q 11995  df-rp 12034  df-fz 12539  df-fzo 12679  df-fl 12806  df-mod 12882  df-seq 13014  df-exp 13073  df-fac 13270  df-bc 13299  df-hash 13327  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-clim 14518  df-sum 14716  df-dvds 15280  df-gcd 15512  df-prm 15680  df-pc 15835
This theorem is referenced by:  bposlem3  25316
  Copyright terms: Public domain W3C validator