MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcgrid Structured version   Visualization version   GIF version

Theorem axcgrid 28850
Description: If there is no distance between 𝐴 and 𝐵, then 𝐴 = 𝐵. Axiom A3 of [Schwabhauser] p. 10. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
axcgrid ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ → 𝐴 = 𝐵))

Proof of Theorem axcgrid
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 fveecn 28836 . . . . . . . . . 10 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
2 subid 11448 . . . . . . . . . . 11 ((𝐶𝑖) ∈ ℂ → ((𝐶𝑖) − (𝐶𝑖)) = 0)
32sq0id 14166 . . . . . . . . . 10 ((𝐶𝑖) ∈ ℂ → (((𝐶𝑖) − (𝐶𝑖))↑2) = 0)
41, 3syl 17 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐶𝑖) − (𝐶𝑖))↑2) = 0)
54sumeq2dv 15675 . . . . . . . 8 (𝐶 ∈ (𝔼‘𝑁) → Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)0)
6 fzfid 13945 . . . . . . . . 9 (𝐶 ∈ (𝔼‘𝑁) → (1...𝑁) ∈ Fin)
7 sumz 15695 . . . . . . . . . 10 (((1...𝑁) ⊆ (ℤ‘1) ∨ (1...𝑁) ∈ Fin) → Σ𝑖 ∈ (1...𝑁)0 = 0)
87olcs 876 . . . . . . . . 9 ((1...𝑁) ∈ Fin → Σ𝑖 ∈ (1...𝑁)0 = 0)
96, 8syl 17 . . . . . . . 8 (𝐶 ∈ (𝔼‘𝑁) → Σ𝑖 ∈ (1...𝑁)0 = 0)
105, 9eqtrd 2765 . . . . . . 7 (𝐶 ∈ (𝔼‘𝑁) → Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2) = 0)
11103ad2ant3 1135 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2) = 0)
1211eqeq2d 2741 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0))
13 fzfid 13945 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (1...𝑁) ∈ Fin)
14 fveere 28835 . . . . . . . . . . 11 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
1514adantlr 715 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
16 fveere 28835 . . . . . . . . . . 11 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
1716adantll 714 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
1815, 17resubcld 11613 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ)
1918resqcld 14097 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐴𝑖) − (𝐵𝑖))↑2) ∈ ℝ)
2018sqge0d 14109 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → 0 ≤ (((𝐴𝑖) − (𝐵𝑖))↑2))
2113, 19, 20fsum00 15771 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0))
22 fveecn 28836 . . . . . . . . . 10 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
23 fveecn 28836 . . . . . . . . . 10 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
24 subcl 11427 . . . . . . . . . . . 12 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → ((𝐴𝑖) − (𝐵𝑖)) ∈ ℂ)
25 sqeq0 14092 . . . . . . . . . . . 12 (((𝐴𝑖) − (𝐵𝑖)) ∈ ℂ → ((((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ((𝐴𝑖) − (𝐵𝑖)) = 0))
2624, 25syl 17 . . . . . . . . . . 11 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → ((((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ((𝐴𝑖) − (𝐵𝑖)) = 0))
27 subeq0 11455 . . . . . . . . . . 11 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → (((𝐴𝑖) − (𝐵𝑖)) = 0 ↔ (𝐴𝑖) = (𝐵𝑖)))
2826, 27bitrd 279 . . . . . . . . . 10 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → ((((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ (𝐴𝑖) = (𝐵𝑖)))
2922, 23, 28syl2an 596 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁))) → ((((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ (𝐴𝑖) = (𝐵𝑖)))
3029anandirs 679 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ (𝐴𝑖) = (𝐵𝑖)))
3130ralbidva 3155 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
3221, 31bitrd 279 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
33323adant3 1132 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
3412, 33bitrd 279 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2) ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
35 simp1 1136 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
36 simp2 1137 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
37 simp3 1138 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
38 brcgr 28834 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2)))
3935, 36, 37, 37, 38syl22anc 838 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2)))
40 eqeefv 28837 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
41403adant3 1132 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
4234, 39, 413bitr4d 311 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ ↔ 𝐴 = 𝐵))
4342biimpd 229 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ → 𝐴 = 𝐵))
4443adantl 481 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wss 3917  cop 4598   class class class wbr 5110  cfv 6514  (class class class)co 7390  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076  cmin 11412  cn 12193  2c2 12248  cuz 12800  ...cfz 13475  cexp 14033  Σcsu 15659  𝔼cee 28822  Cgrccgr 28824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-ee 28825  df-cgr 28827
This theorem is referenced by:  eengtrkg  28920  cgrtriv  35997  cgrid2  35998  cgrdegen  35999  segconeq  36005  btwntriv2  36007  btwnconn1lem7  36088  btwnconn1lem11  36092  btwnconn1lem12  36093
  Copyright terms: Public domain W3C validator