Step | Hyp | Ref
| Expression |
1 | | fveecn 27270 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶‘𝑖) ∈ ℂ) |
2 | | subid 11240 |
. . . . . . . . . . 11
⊢ ((𝐶‘𝑖) ∈ ℂ → ((𝐶‘𝑖) − (𝐶‘𝑖)) = 0) |
3 | 2 | sq0id 13911 |
. . . . . . . . . 10
⊢ ((𝐶‘𝑖) ∈ ℂ → (((𝐶‘𝑖) − (𝐶‘𝑖))↑2) = 0) |
4 | 1, 3 | syl 17 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐶‘𝑖) − (𝐶‘𝑖))↑2) = 0) |
5 | 4 | sumeq2dv 15415 |
. . . . . . . 8
⊢ (𝐶 ∈ (𝔼‘𝑁) → Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐶‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)0) |
6 | | fzfid 13693 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝔼‘𝑁) → (1...𝑁) ∈ Fin) |
7 | | sumz 15434 |
. . . . . . . . . 10
⊢
(((1...𝑁) ⊆
(ℤ≥‘1) ∨ (1...𝑁) ∈ Fin) → Σ𝑖 ∈ (1...𝑁)0 = 0) |
8 | 7 | olcs 873 |
. . . . . . . . 9
⊢
((1...𝑁) ∈ Fin
→ Σ𝑖 ∈
(1...𝑁)0 =
0) |
9 | 6, 8 | syl 17 |
. . . . . . . 8
⊢ (𝐶 ∈ (𝔼‘𝑁) → Σ𝑖 ∈ (1...𝑁)0 = 0) |
10 | 5, 9 | eqtrd 2778 |
. . . . . . 7
⊢ (𝐶 ∈ (𝔼‘𝑁) → Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐶‘𝑖))↑2) = 0) |
11 | 10 | 3ad2ant3 1134 |
. . . . . 6
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐶‘𝑖))↑2) = 0) |
12 | 11 | eqeq2d 2749 |
. . . . 5
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐶‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = 0)) |
13 | | fzfid 13693 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (1...𝑁) ∈ Fin) |
14 | | fveere 27269 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℝ) |
15 | 14 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℝ) |
16 | | fveere 27269 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) ∈ ℝ) |
17 | 16 | adantll 711 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) ∈ ℝ) |
18 | 15, 17 | resubcld 11403 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ) |
19 | 18 | resqcld 13965 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐴‘𝑖) − (𝐵‘𝑖))↑2) ∈ ℝ) |
20 | 18 | sqge0d 13966 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → 0 ≤ (((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) |
21 | 13, 19, 20 | fsum00 15510 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = 0)) |
22 | | fveecn 27270 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℂ) |
23 | | fveecn 27270 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) ∈ ℂ) |
24 | | subcl 11220 |
. . . . . . . . . . . 12
⊢ (((𝐴‘𝑖) ∈ ℂ ∧ (𝐵‘𝑖) ∈ ℂ) → ((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℂ) |
25 | | sqeq0 13840 |
. . . . . . . . . . . 12
⊢ (((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℂ → ((((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = 0 ↔ ((𝐴‘𝑖) − (𝐵‘𝑖)) = 0)) |
26 | 24, 25 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐴‘𝑖) ∈ ℂ ∧ (𝐵‘𝑖) ∈ ℂ) → ((((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = 0 ↔ ((𝐴‘𝑖) − (𝐵‘𝑖)) = 0)) |
27 | | subeq0 11247 |
. . . . . . . . . . 11
⊢ (((𝐴‘𝑖) ∈ ℂ ∧ (𝐵‘𝑖) ∈ ℂ) → (((𝐴‘𝑖) − (𝐵‘𝑖)) = 0 ↔ (𝐴‘𝑖) = (𝐵‘𝑖))) |
28 | 26, 27 | bitrd 278 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑖) ∈ ℂ ∧ (𝐵‘𝑖) ∈ ℂ) → ((((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = 0 ↔ (𝐴‘𝑖) = (𝐵‘𝑖))) |
29 | 22, 23, 28 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁))) → ((((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = 0 ↔ (𝐴‘𝑖) = (𝐵‘𝑖))) |
30 | 29 | anandirs 676 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = 0 ↔ (𝐴‘𝑖) = (𝐵‘𝑖))) |
31 | 30 | ralbidva 3111 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = 0 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
32 | 21, 31 | bitrd 278 |
. . . . . 6
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = 0 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
33 | 32 | 3adant3 1131 |
. . . . 5
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = 0 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
34 | 12, 33 | bitrd 278 |
. . . 4
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐶‘𝑖))↑2) ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
35 | | simp1 1135 |
. . . . 5
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁)) |
36 | | simp2 1136 |
. . . . 5
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁)) |
37 | | simp3 1137 |
. . . . 5
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) |
38 | | brcgr 27268 |
. . . . 5
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐶〉 ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐶‘𝑖))↑2))) |
39 | 35, 36, 37, 37, 38 | syl22anc 836 |
. . . 4
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐶〉 ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐶‘𝑖))↑2))) |
40 | | eqeefv 27271 |
. . . . 5
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
41 | 40 | 3adant3 1131 |
. . . 4
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
42 | 34, 39, 41 | 3bitr4d 311 |
. . 3
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐶〉 ↔ 𝐴 = 𝐵)) |
43 | 42 | biimpd 228 |
. 2
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐶〉 → 𝐴 = 𝐵)) |
44 | 43 | adantl 482 |
1
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐶〉 → 𝐴 = 𝐵)) |