MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcgrid Structured version   Visualization version   GIF version

Theorem axcgrid 28153
Description: If there is no distance between 𝐴 and 𝐵, then 𝐴 = 𝐵. Axiom A3 of [Schwabhauser] p. 10. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
axcgrid ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ → 𝐴 = 𝐵))

Proof of Theorem axcgrid
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 fveecn 28139 . . . . . . . . . 10 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
2 subid 11474 . . . . . . . . . . 11 ((𝐶𝑖) ∈ ℂ → ((𝐶𝑖) − (𝐶𝑖)) = 0)
32sq0id 14153 . . . . . . . . . 10 ((𝐶𝑖) ∈ ℂ → (((𝐶𝑖) − (𝐶𝑖))↑2) = 0)
41, 3syl 17 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐶𝑖) − (𝐶𝑖))↑2) = 0)
54sumeq2dv 15644 . . . . . . . 8 (𝐶 ∈ (𝔼‘𝑁) → Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)0)
6 fzfid 13933 . . . . . . . . 9 (𝐶 ∈ (𝔼‘𝑁) → (1...𝑁) ∈ Fin)
7 sumz 15663 . . . . . . . . . 10 (((1...𝑁) ⊆ (ℤ‘1) ∨ (1...𝑁) ∈ Fin) → Σ𝑖 ∈ (1...𝑁)0 = 0)
87olcs 875 . . . . . . . . 9 ((1...𝑁) ∈ Fin → Σ𝑖 ∈ (1...𝑁)0 = 0)
96, 8syl 17 . . . . . . . 8 (𝐶 ∈ (𝔼‘𝑁) → Σ𝑖 ∈ (1...𝑁)0 = 0)
105, 9eqtrd 2773 . . . . . . 7 (𝐶 ∈ (𝔼‘𝑁) → Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2) = 0)
11103ad2ant3 1136 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2) = 0)
1211eqeq2d 2744 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0))
13 fzfid 13933 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (1...𝑁) ∈ Fin)
14 fveere 28138 . . . . . . . . . . 11 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
1514adantlr 714 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
16 fveere 28138 . . . . . . . . . . 11 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
1716adantll 713 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
1815, 17resubcld 11637 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ)
1918resqcld 14085 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐴𝑖) − (𝐵𝑖))↑2) ∈ ℝ)
2018sqge0d 14097 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → 0 ≤ (((𝐴𝑖) − (𝐵𝑖))↑2))
2113, 19, 20fsum00 15739 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0))
22 fveecn 28139 . . . . . . . . . 10 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
23 fveecn 28139 . . . . . . . . . 10 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
24 subcl 11454 . . . . . . . . . . . 12 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → ((𝐴𝑖) − (𝐵𝑖)) ∈ ℂ)
25 sqeq0 14080 . . . . . . . . . . . 12 (((𝐴𝑖) − (𝐵𝑖)) ∈ ℂ → ((((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ((𝐴𝑖) − (𝐵𝑖)) = 0))
2624, 25syl 17 . . . . . . . . . . 11 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → ((((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ((𝐴𝑖) − (𝐵𝑖)) = 0))
27 subeq0 11481 . . . . . . . . . . 11 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → (((𝐴𝑖) − (𝐵𝑖)) = 0 ↔ (𝐴𝑖) = (𝐵𝑖)))
2826, 27bitrd 279 . . . . . . . . . 10 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → ((((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ (𝐴𝑖) = (𝐵𝑖)))
2922, 23, 28syl2an 597 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁))) → ((((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ (𝐴𝑖) = (𝐵𝑖)))
3029anandirs 678 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ (𝐴𝑖) = (𝐵𝑖)))
3130ralbidva 3176 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
3221, 31bitrd 279 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
33323adant3 1133 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
3412, 33bitrd 279 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2) ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
35 simp1 1137 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
36 simp2 1138 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
37 simp3 1139 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
38 brcgr 28137 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2)))
3935, 36, 37, 37, 38syl22anc 838 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2)))
40 eqeefv 28140 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
41403adant3 1133 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
4234, 39, 413bitr4d 311 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ ↔ 𝐴 = 𝐵))
4342biimpd 228 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ → 𝐴 = 𝐵))
4443adantl 483 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wss 3946  cop 4632   class class class wbr 5146  cfv 6539  (class class class)co 7403  Fincfn 8934  cc 11103  cr 11104  0cc0 11105  1c1 11106  cmin 11439  cn 12207  2c2 12262  cuz 12817  ...cfz 13479  cexp 14022  Σcsu 15627  𝔼cee 28125  Cgrccgr 28127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-inf2 9631  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-int 4949  df-iun 4997  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-isom 6548  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-1o 8460  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-sup 9432  df-oi 9500  df-card 9929  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-div 11867  df-nn 12208  df-2 12270  df-3 12271  df-n0 12468  df-z 12554  df-uz 12818  df-rp 12970  df-ico 13325  df-fz 13480  df-fzo 13623  df-seq 13962  df-exp 14023  df-hash 14286  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15427  df-sum 15628  df-ee 28128  df-cgr 28130
This theorem is referenced by:  eengtrkg  28223  cgrtriv  34911  cgrid2  34912  cgrdegen  34913  segconeq  34919  btwntriv2  34921  btwnconn1lem7  35002  btwnconn1lem11  35006  btwnconn1lem12  35007
  Copyright terms: Public domain W3C validator