MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcgrid Structured version   Visualization version   GIF version

Theorem axcgrid 28931
Description: If there is no distance between 𝐴 and 𝐵, then 𝐴 = 𝐵. Axiom A3 of [Schwabhauser] p. 10. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
axcgrid ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ → 𝐴 = 𝐵))

Proof of Theorem axcgrid
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 fveecn 28917 . . . . . . . . . 10 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
2 subid 11528 . . . . . . . . . . 11 ((𝐶𝑖) ∈ ℂ → ((𝐶𝑖) − (𝐶𝑖)) = 0)
32sq0id 14233 . . . . . . . . . 10 ((𝐶𝑖) ∈ ℂ → (((𝐶𝑖) − (𝐶𝑖))↑2) = 0)
41, 3syl 17 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐶𝑖) − (𝐶𝑖))↑2) = 0)
54sumeq2dv 15738 . . . . . . . 8 (𝐶 ∈ (𝔼‘𝑁) → Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)0)
6 fzfid 14014 . . . . . . . . 9 (𝐶 ∈ (𝔼‘𝑁) → (1...𝑁) ∈ Fin)
7 sumz 15758 . . . . . . . . . 10 (((1...𝑁) ⊆ (ℤ‘1) ∨ (1...𝑁) ∈ Fin) → Σ𝑖 ∈ (1...𝑁)0 = 0)
87olcs 877 . . . . . . . . 9 ((1...𝑁) ∈ Fin → Σ𝑖 ∈ (1...𝑁)0 = 0)
96, 8syl 17 . . . . . . . 8 (𝐶 ∈ (𝔼‘𝑁) → Σ𝑖 ∈ (1...𝑁)0 = 0)
105, 9eqtrd 2777 . . . . . . 7 (𝐶 ∈ (𝔼‘𝑁) → Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2) = 0)
11103ad2ant3 1136 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2) = 0)
1211eqeq2d 2748 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0))
13 fzfid 14014 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (1...𝑁) ∈ Fin)
14 fveere 28916 . . . . . . . . . . 11 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
1514adantlr 715 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
16 fveere 28916 . . . . . . . . . . 11 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
1716adantll 714 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
1815, 17resubcld 11691 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ)
1918resqcld 14165 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐴𝑖) − (𝐵𝑖))↑2) ∈ ℝ)
2018sqge0d 14177 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → 0 ≤ (((𝐴𝑖) − (𝐵𝑖))↑2))
2113, 19, 20fsum00 15834 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0))
22 fveecn 28917 . . . . . . . . . 10 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
23 fveecn 28917 . . . . . . . . . 10 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
24 subcl 11507 . . . . . . . . . . . 12 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → ((𝐴𝑖) − (𝐵𝑖)) ∈ ℂ)
25 sqeq0 14160 . . . . . . . . . . . 12 (((𝐴𝑖) − (𝐵𝑖)) ∈ ℂ → ((((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ((𝐴𝑖) − (𝐵𝑖)) = 0))
2624, 25syl 17 . . . . . . . . . . 11 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → ((((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ((𝐴𝑖) − (𝐵𝑖)) = 0))
27 subeq0 11535 . . . . . . . . . . 11 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → (((𝐴𝑖) − (𝐵𝑖)) = 0 ↔ (𝐴𝑖) = (𝐵𝑖)))
2826, 27bitrd 279 . . . . . . . . . 10 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → ((((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ (𝐴𝑖) = (𝐵𝑖)))
2922, 23, 28syl2an 596 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁))) → ((((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ (𝐴𝑖) = (𝐵𝑖)))
3029anandirs 679 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ (𝐴𝑖) = (𝐵𝑖)))
3130ralbidva 3176 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
3221, 31bitrd 279 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
33323adant3 1133 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
3412, 33bitrd 279 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2) ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
35 simp1 1137 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
36 simp2 1138 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
37 simp3 1139 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
38 brcgr 28915 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2)))
3935, 36, 37, 37, 38syl22anc 839 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2)))
40 eqeefv 28918 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
41403adant3 1133 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
4234, 39, 413bitr4d 311 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ ↔ 𝐴 = 𝐵))
4342biimpd 229 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ → 𝐴 = 𝐵))
4443adantl 481 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wss 3951  cop 4632   class class class wbr 5143  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  cr 11154  0cc0 11155  1c1 11156  cmin 11492  cn 12266  2c2 12321  cuz 12878  ...cfz 13547  cexp 14102  Σcsu 15722  𝔼cee 28903  Cgrccgr 28905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-ee 28906  df-cgr 28908
This theorem is referenced by:  eengtrkg  29001  cgrtriv  36003  cgrid2  36004  cgrdegen  36005  segconeq  36011  btwntriv2  36013  btwnconn1lem7  36094  btwnconn1lem11  36098  btwnconn1lem12  36099
  Copyright terms: Public domain W3C validator