Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcgrid Structured version   Visualization version   GIF version

Theorem axcgrid 26814
 Description: If there is no distance between 𝐴 and 𝐵, then 𝐴 = 𝐵. Axiom A3 of [Schwabhauser] p. 10. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
axcgrid ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ → 𝐴 = 𝐵))

Proof of Theorem axcgrid
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 fveecn 26800 . . . . . . . . . 10 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
2 subid 10948 . . . . . . . . . . 11 ((𝐶𝑖) ∈ ℂ → ((𝐶𝑖) − (𝐶𝑖)) = 0)
32sq0id 13612 . . . . . . . . . 10 ((𝐶𝑖) ∈ ℂ → (((𝐶𝑖) − (𝐶𝑖))↑2) = 0)
41, 3syl 17 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐶𝑖) − (𝐶𝑖))↑2) = 0)
54sumeq2dv 15113 . . . . . . . 8 (𝐶 ∈ (𝔼‘𝑁) → Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)0)
6 fzfid 13395 . . . . . . . . 9 (𝐶 ∈ (𝔼‘𝑁) → (1...𝑁) ∈ Fin)
7 sumz 15132 . . . . . . . . . 10 (((1...𝑁) ⊆ (ℤ‘1) ∨ (1...𝑁) ∈ Fin) → Σ𝑖 ∈ (1...𝑁)0 = 0)
87olcs 873 . . . . . . . . 9 ((1...𝑁) ∈ Fin → Σ𝑖 ∈ (1...𝑁)0 = 0)
96, 8syl 17 . . . . . . . 8 (𝐶 ∈ (𝔼‘𝑁) → Σ𝑖 ∈ (1...𝑁)0 = 0)
105, 9eqtrd 2793 . . . . . . 7 (𝐶 ∈ (𝔼‘𝑁) → Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2) = 0)
11103ad2ant3 1132 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2) = 0)
1211eqeq2d 2769 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0))
13 fzfid 13395 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (1...𝑁) ∈ Fin)
14 fveere 26799 . . . . . . . . . . 11 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
1514adantlr 714 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
16 fveere 26799 . . . . . . . . . . 11 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
1716adantll 713 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
1815, 17resubcld 11111 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ)
1918resqcld 13666 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐴𝑖) − (𝐵𝑖))↑2) ∈ ℝ)
2018sqge0d 13667 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → 0 ≤ (((𝐴𝑖) − (𝐵𝑖))↑2))
2113, 19, 20fsum00 15206 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0))
22 fveecn 26800 . . . . . . . . . 10 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
23 fveecn 26800 . . . . . . . . . 10 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
24 subcl 10928 . . . . . . . . . . . 12 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → ((𝐴𝑖) − (𝐵𝑖)) ∈ ℂ)
25 sqeq0 13541 . . . . . . . . . . . 12 (((𝐴𝑖) − (𝐵𝑖)) ∈ ℂ → ((((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ((𝐴𝑖) − (𝐵𝑖)) = 0))
2624, 25syl 17 . . . . . . . . . . 11 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → ((((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ((𝐴𝑖) − (𝐵𝑖)) = 0))
27 subeq0 10955 . . . . . . . . . . 11 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → (((𝐴𝑖) − (𝐵𝑖)) = 0 ↔ (𝐴𝑖) = (𝐵𝑖)))
2826, 27bitrd 282 . . . . . . . . . 10 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → ((((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ (𝐴𝑖) = (𝐵𝑖)))
2922, 23, 28syl2an 598 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁))) → ((((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ (𝐴𝑖) = (𝐵𝑖)))
3029anandirs 678 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ (𝐴𝑖) = (𝐵𝑖)))
3130ralbidva 3125 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
3221, 31bitrd 282 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
33323adant3 1129 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
3412, 33bitrd 282 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2) ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
35 simp1 1133 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
36 simp2 1134 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
37 simp3 1135 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
38 brcgr 26798 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2)))
3935, 36, 37, 37, 38syl22anc 837 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐶𝑖))↑2)))
40 eqeefv 26801 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
41403adant3 1129 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
4234, 39, 413bitr4d 314 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ ↔ 𝐴 = 𝐵))
4342biimpd 232 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ → 𝐴 = 𝐵))
4443adantl 485 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ → 𝐴 = 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3070   ⊆ wss 3860  ⟨cop 4531   class class class wbr 5035  ‘cfv 6339  (class class class)co 7155  Fincfn 8532  ℂcc 10578  ℝcr 10579  0cc0 10580  1c1 10581   − cmin 10913  ℕcn 11679  2c2 11734  ℤ≥cuz 12287  ...cfz 12944  ↑cexp 13484  Σcsu 15095  𝔼cee 26786  Cgrccgr 26788 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-inf2 9142  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-map 8423  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-sup 8944  df-oi 9012  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-n0 11940  df-z 12026  df-uz 12288  df-rp 12436  df-ico 12790  df-fz 12945  df-fzo 13088  df-seq 13424  df-exp 13485  df-hash 13746  df-cj 14511  df-re 14512  df-im 14513  df-sqrt 14647  df-abs 14648  df-clim 14898  df-sum 15096  df-ee 26789  df-cgr 26791 This theorem is referenced by:  eengtrkg  26884  cgrtriv  33879  cgrid2  33880  cgrdegen  33881  segconeq  33887  btwntriv2  33889  btwnconn1lem7  33970  btwnconn1lem11  33974  btwnconn1lem12  33975
 Copyright terms: Public domain W3C validator