| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrninxpex | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for the intersection of a range Cartesian product with a Cartesian product to be a set. (Contributed by Peter Mazsa, 12-Apr-2020.) |
| Ref | Expression |
|---|---|
| xrninxpex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexg 7683 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐵 × 𝐶) ∈ V) | |
| 2 | inxpex 38373 | . . . 4 ⊢ (((𝑅 ⋉ 𝑆) ∈ V ∨ (𝐴 ∈ 𝑉 ∧ (𝐵 × 𝐶) ∈ V)) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V) | |
| 3 | 2 | olcs 876 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 × 𝐶) ∈ V) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V) |
| 4 | 1, 3 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋)) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V) |
| 5 | 4 | 3impb 1114 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 Vcvv 3436 ∩ cin 3901 × cxp 5614 ⋉ cxrn 38220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-opab 5154 df-xp 5622 df-rel 5623 |
| This theorem is referenced by: xrnresex 38444 |
| Copyright terms: Public domain | W3C validator |