| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrninxpex | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for the intersection of a range Cartesian product with a Cartesian product to be a set. (Contributed by Peter Mazsa, 12-Apr-2020.) |
| Ref | Expression |
|---|---|
| xrninxpex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexg 7749 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐵 × 𝐶) ∈ V) | |
| 2 | inxpex 38362 | . . . 4 ⊢ (((𝑅 ⋉ 𝑆) ∈ V ∨ (𝐴 ∈ 𝑉 ∧ (𝐵 × 𝐶) ∈ V)) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V) | |
| 3 | 2 | olcs 876 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 × 𝐶) ∈ V) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V) |
| 4 | 1, 3 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋)) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V) |
| 5 | 4 | 3impb 1114 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 Vcvv 3464 ∩ cin 3930 × cxp 5657 ⋉ cxrn 38203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-opab 5187 df-xp 5665 df-rel 5666 |
| This theorem is referenced by: xrnresex 38429 |
| Copyright terms: Public domain | W3C validator |