Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrninxpex Structured version   Visualization version   GIF version

Theorem xrninxpex 38350
Description: Sufficient condition for the intersection of a range Cartesian product with a Cartesian product to be a set. (Contributed by Peter Mazsa, 12-Apr-2020.)
Assertion
Ref Expression
xrninxpex ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V)

Proof of Theorem xrninxpex
StepHypRef Expression
1 xpexg 7785 . . 3 ((𝐵𝑊𝐶𝑋) → (𝐵 × 𝐶) ∈ V)
2 inxpex 38295 . . . 4 (((𝑅𝑆) ∈ V ∨ (𝐴𝑉 ∧ (𝐵 × 𝐶) ∈ V)) → ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V)
32olcs 875 . . 3 ((𝐴𝑉 ∧ (𝐵 × 𝐶) ∈ V) → ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V)
41, 3sylan2 592 . 2 ((𝐴𝑉 ∧ (𝐵𝑊𝐶𝑋)) → ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V)
543impb 1115 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2108  Vcvv 3488  cin 3975   × cxp 5698  cxrn 38134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-opab 5229  df-xp 5706  df-rel 5707
This theorem is referenced by:  xrnresex  38362
  Copyright terms: Public domain W3C validator