Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrninxpex Structured version   Visualization version   GIF version

Theorem xrninxpex 36447
Description: Sufficient condition for the intersection of a range Cartesian product with a Cartesian product to be a set. (Contributed by Peter Mazsa, 12-Apr-2020.)
Assertion
Ref Expression
xrninxpex ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V)

Proof of Theorem xrninxpex
StepHypRef Expression
1 xpexg 7578 . . 3 ((𝐵𝑊𝐶𝑋) → (𝐵 × 𝐶) ∈ V)
2 inxpex 36401 . . . 4 (((𝑅𝑆) ∈ V ∨ (𝐴𝑉 ∧ (𝐵 × 𝐶) ∈ V)) → ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V)
32olcs 872 . . 3 ((𝐴𝑉 ∧ (𝐵 × 𝐶) ∈ V) → ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V)
41, 3sylan2 592 . 2 ((𝐴𝑉 ∧ (𝐵𝑊𝐶𝑋)) → ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V)
543impb 1113 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2108  Vcvv 3422  cin 3882   × cxp 5578  cxrn 36259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-opab 5133  df-xp 5586  df-rel 5587
This theorem is referenced by:  xrnresex  36459
  Copyright terms: Public domain W3C validator