![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrninxpex | Structured version Visualization version GIF version |
Description: Sufficient condition for the intersection of a range Cartesian product with a Cartesian product to be a set. (Contributed by Peter Mazsa, 12-Apr-2020.) |
Ref | Expression |
---|---|
xrninxpex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpexg 7736 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐵 × 𝐶) ∈ V) | |
2 | inxpex 37203 | . . . 4 ⊢ (((𝑅 ⋉ 𝑆) ∈ V ∨ (𝐴 ∈ 𝑉 ∧ (𝐵 × 𝐶) ∈ V)) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V) | |
3 | 2 | olcs 874 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 × 𝐶) ∈ V) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V) |
4 | 1, 3 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋)) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V) |
5 | 4 | 3impb 1115 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 Vcvv 3474 ∩ cin 3947 × cxp 5674 ⋉ cxrn 37037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-opab 5211 df-xp 5682 df-rel 5683 |
This theorem is referenced by: xrnresex 37271 |
Copyright terms: Public domain | W3C validator |