Proof of Theorem fsum2dsub
Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁)) |
2 | 1 | elfzelzd 13186 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℤ) |
3 | | 0zd 12261 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 0 ∈ ℤ) |
4 | | fzsum2sub.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
5 | 4 | nn0zd 12353 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
6 | 5 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℤ) |
7 | | simpll 763 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝜑) |
8 | | fz1ssnn 13216 |
. . . . . . . . . . . 12
⊢
(1...𝑁) ⊆
ℕ |
9 | | nnssnn0 12166 |
. . . . . . . . . . . 12
⊢ ℕ
⊆ ℕ0 |
10 | 8, 9 | sstri 3926 |
. . . . . . . . . . 11
⊢
(1...𝑁) ⊆
ℕ0 |
11 | 10, 1 | sselid 3915 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ0) |
12 | | nn0uz 12549 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
13 | 11, 12 | eleqtrdi 2849 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈
(ℤ≥‘0)) |
14 | | neg0 11197 |
. . . . . . . . . 10
⊢ -0 =
0 |
15 | | uzneg 12531 |
. . . . . . . . . 10
⊢ (𝑗 ∈
(ℤ≥‘0) → -0 ∈
(ℤ≥‘-𝑗)) |
16 | 14, 15 | eqeltrrid 2844 |
. . . . . . . . 9
⊢ (𝑗 ∈
(ℤ≥‘0) → 0 ∈
(ℤ≥‘-𝑗)) |
17 | | fzss1 13224 |
. . . . . . . . 9
⊢ (0 ∈
(ℤ≥‘-𝑗) → (0...𝑀) ⊆ (-𝑗...𝑀)) |
18 | 13, 16, 17 | 3syl 18 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (0...𝑀) ⊆ (-𝑗...𝑀)) |
19 | | fzssuz 13226 |
. . . . . . . 8
⊢ (-𝑗...𝑀) ⊆
(ℤ≥‘-𝑗) |
20 | 18, 19 | sstrdi 3929 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (0...𝑀) ⊆
(ℤ≥‘-𝑗)) |
21 | 20 | sselda 3917 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝑖 ∈ (ℤ≥‘-𝑗)) |
22 | 1 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝑗 ∈ (1...𝑁)) |
23 | | fzsum2sub.2 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘-𝑗) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ ℂ) |
24 | 7, 21, 22, 23 | syl3anc 1369 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝐴 ∈ ℂ) |
25 | | fzsum2sub.1 |
. . . . 5
⊢ (𝑖 = (𝑘 − 𝑗) → 𝐴 = 𝐵) |
26 | 2, 3, 6, 24, 25 | fsumshft 15420 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑖 ∈ (0...𝑀)𝐴 = Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵) |
27 | 4 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑀 ∈
ℕ0) |
28 | 8, 1 | sselid 3915 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ) |
29 | 28 | nnnn0d 12223 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ0) |
30 | 27, 29 | nn0addcld 12227 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈
ℕ0) |
31 | 30 | nn0red 12224 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ ℝ) |
32 | 31 | ltp1d 11835 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) < ((𝑀 + 𝑗) + 1)) |
33 | | fzdisj 13212 |
. . . . . . . 8
⊢ ((𝑀 + 𝑗) < ((𝑀 + 𝑗) + 1) → ((𝑗...(𝑀 + 𝑗)) ∩ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) = ∅) |
34 | 32, 33 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((𝑗...(𝑀 + 𝑗)) ∩ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) = ∅) |
35 | | fzsum2sub.n |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
36 | 35 | nn0zd 12353 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℤ) |
37 | 5, 36 | zaddcld 12359 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 + 𝑁) ∈ ℤ) |
38 | 37 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ∈ ℤ) |
39 | 30 | nn0zd 12353 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ ℤ) |
40 | 28 | nnred 11918 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℝ) |
41 | | nn0addge2 12210 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ℝ ∧ 𝑀 ∈ ℕ0)
→ 𝑗 ≤ (𝑀 + 𝑗)) |
42 | 40, 27, 41 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ≤ (𝑀 + 𝑗)) |
43 | 35 | nn0red 12224 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℝ) |
44 | 43 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑁 ∈ ℝ) |
45 | 27 | nn0red 12224 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℝ) |
46 | | elfzle2 13189 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (1...𝑁) → 𝑗 ≤ 𝑁) |
47 | 46 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ≤ 𝑁) |
48 | 40, 44, 45, 47 | leadd2dd 11520 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ≤ (𝑀 + 𝑁)) |
49 | 2, 38, 39, 42, 48 | elfzd 13176 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ (𝑗...(𝑀 + 𝑁))) |
50 | | fzsplit 13211 |
. . . . . . . 8
⊢ ((𝑀 + 𝑗) ∈ (𝑗...(𝑀 + 𝑁)) → (𝑗...(𝑀 + 𝑁)) = ((𝑗...(𝑀 + 𝑗)) ∪ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)))) |
51 | 49, 50 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑁)) = ((𝑗...(𝑀 + 𝑗)) ∪ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)))) |
52 | | fzfid 13621 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑁)) ∈ Fin) |
53 | | simpll 763 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝜑) |
54 | 1 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑗 ∈ (1...𝑁)) |
55 | 10, 54 | sselid 3915 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑗 ∈ ℕ0) |
56 | | fz2ssnn0 31008 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ0
→ (𝑗...(𝑀 + 𝑁)) ⊆
ℕ0) |
57 | 55, 56 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → (𝑗...(𝑀 + 𝑁)) ⊆
ℕ0) |
58 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) |
59 | 57, 58 | sseldd 3918 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑘 ∈ ℕ0) |
60 | 25 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑖 = (𝑘 − 𝑗) → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
61 | | simpll 763 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (ℤ≥‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝜑) |
62 | | simplr 765 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (ℤ≥‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝑖 ∈ (ℤ≥‘-𝑗)) |
63 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (ℤ≥‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁)) |
64 | 61, 62, 63, 23 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (ℤ≥‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ ℂ) |
65 | 64 | an32s 648 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (ℤ≥‘-𝑗)) → 𝐴 ∈ ℂ) |
66 | 65 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ∀𝑖 ∈ (ℤ≥‘-𝑗)𝐴 ∈ ℂ) |
67 | 66 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) →
∀𝑖 ∈
(ℤ≥‘-𝑗)𝐴 ∈ ℂ) |
68 | | nnsscn 11908 |
. . . . . . . . . . . . 13
⊢ ℕ
⊆ ℂ |
69 | 8, 68 | sstri 3926 |
. . . . . . . . . . . 12
⊢
(1...𝑁) ⊆
ℂ |
70 | | simplr 765 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ (1...𝑁)) |
71 | 69, 70 | sselid 3915 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈
ℂ) |
72 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
73 | 72 | nn0cnd 12225 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℂ) |
74 | 71, 73 | negsubdi2d 11278 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → -(𝑗 − 𝑘) = (𝑘 − 𝑗)) |
75 | 70 | elfzelzd 13186 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈
ℤ) |
76 | | eluzmn 12518 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ0)
→ 𝑗 ∈
(ℤ≥‘(𝑗 − 𝑘))) |
77 | 75, 72, 76 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈
(ℤ≥‘(𝑗 − 𝑘))) |
78 | | uzneg 12531 |
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘(𝑗 − 𝑘)) → -(𝑗 − 𝑘) ∈ (ℤ≥‘-𝑗)) |
79 | 77, 78 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → -(𝑗 − 𝑘) ∈ (ℤ≥‘-𝑗)) |
80 | 74, 79 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → (𝑘 − 𝑗) ∈ (ℤ≥‘-𝑗)) |
81 | 60, 67, 80 | rspcdva 3554 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈
ℂ) |
82 | 53, 54, 59, 81 | syl21anc 834 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝐵 ∈ ℂ) |
83 | 34, 51, 52, 82 | fsumsplit 15381 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵 = (Σ𝑘 ∈ (𝑗...(𝑀 + 𝑗))𝐵 + Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵)) |
84 | 2 | zcnd 12356 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℂ) |
85 | 84 | addid2d 11106 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (0 + 𝑗) = 𝑗) |
86 | 85 | oveq1d 7270 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((0 + 𝑗)...(𝑀 + 𝑗)) = (𝑗...(𝑀 + 𝑗))) |
87 | 86 | eqcomd 2744 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑗)) = ((0 + 𝑗)...(𝑀 + 𝑗))) |
88 | 87 | sumeq1d 15341 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑗))𝐵 = Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵) |
89 | | fzsum2sub.3 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) → 𝐵 = 0) |
90 | 89 | sumeq2dv 15343 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵 = Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0) |
91 | | fzfi 13620 |
. . . . . . . . 9
⊢ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ∈ Fin |
92 | | sumz 15362 |
. . . . . . . . . 10
⊢
(((((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ⊆ (ℤ≥‘0)
∨ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ∈ Fin) → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0 = 0) |
93 | 92 | olcs 872 |
. . . . . . . . 9
⊢ ((((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ∈ Fin → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0 = 0) |
94 | 91, 93 | ax-mp 5 |
. . . . . . . 8
⊢
Σ𝑘 ∈
(((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0 = 0 |
95 | 90, 94 | eqtrdi 2795 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵 = 0) |
96 | 88, 95 | oveq12d 7273 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (Σ𝑘 ∈ (𝑗...(𝑀 + 𝑗))𝐵 + Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵) = (Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 + 0)) |
97 | | fzfid 13621 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((0 + 𝑗)...(𝑀 + 𝑗)) ∈ Fin) |
98 | | simpll 763 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝜑) |
99 | 1 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑗 ∈ (1...𝑁)) |
100 | | elfzuz3 13182 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1...𝑁) → 𝑁 ∈ (ℤ≥‘𝑗)) |
101 | 100 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑁 ∈ (ℤ≥‘𝑗)) |
102 | | eluzadd 12542 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘𝑗) ∧ 𝑀 ∈ ℤ) → (𝑁 + 𝑀) ∈
(ℤ≥‘(𝑗 + 𝑀))) |
103 | 101, 6, 102 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑁 + 𝑀) ∈
(ℤ≥‘(𝑗 + 𝑀))) |
104 | 35 | nn0cnd 12225 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℂ) |
105 | 104 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑁 ∈ ℂ) |
106 | | zsscn 12257 |
. . . . . . . . . . . . . . . 16
⊢ ℤ
⊆ ℂ |
107 | 106, 6 | sselid 3915 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℂ) |
108 | 105, 107 | addcomd 11107 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑁 + 𝑀) = (𝑀 + 𝑁)) |
109 | 84, 107 | addcomd 11107 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑗 + 𝑀) = (𝑀 + 𝑗)) |
110 | 109 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) →
(ℤ≥‘(𝑗 + 𝑀)) = (ℤ≥‘(𝑀 + 𝑗))) |
111 | 103, 108,
110 | 3eltr3d 2853 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ∈
(ℤ≥‘(𝑀 + 𝑗))) |
112 | 111 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → (𝑀 + 𝑁) ∈
(ℤ≥‘(𝑀 + 𝑗))) |
113 | | fzss2 13225 |
. . . . . . . . . . . 12
⊢ ((𝑀 + 𝑁) ∈
(ℤ≥‘(𝑀 + 𝑗)) → (𝑗...(𝑀 + 𝑗)) ⊆ (𝑗...(𝑀 + 𝑁))) |
114 | 112, 113 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → (𝑗...(𝑀 + 𝑗)) ⊆ (𝑗...(𝑀 + 𝑁))) |
115 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) |
116 | 86 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → ((0 + 𝑗)...(𝑀 + 𝑗)) = (𝑗...(𝑀 + 𝑗))) |
117 | 115, 116 | eleqtrd 2841 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ (𝑗...(𝑀 + 𝑗))) |
118 | 114, 117 | sseldd 3918 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) |
119 | 98, 99, 118, 59 | syl21anc 834 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ ℕ0) |
120 | 98, 99, 119, 81 | syl21anc 834 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝐵 ∈ ℂ) |
121 | 97, 120 | fsumcl 15373 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 ∈ ℂ) |
122 | 121 | addid1d 11105 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 + 0) = Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵) |
123 | 83, 96, 122 | 3eqtrrd 2783 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 = Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵) |
124 | | fzval3 13384 |
. . . . . . . . . 10
⊢ ((𝑀 + 𝑁) ∈ ℤ → (𝑗...(𝑀 + 𝑁)) = (𝑗..^((𝑀 + 𝑁) + 1))) |
125 | 38, 124 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑁)) = (𝑗..^((𝑀 + 𝑁) + 1))) |
126 | 125 | ineq2d 4143 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((0..^𝑗) ∩ (𝑗...(𝑀 + 𝑁))) = ((0..^𝑗) ∩ (𝑗..^((𝑀 + 𝑁) + 1)))) |
127 | | fzodisj 13349 |
. . . . . . . 8
⊢
((0..^𝑗) ∩
(𝑗..^((𝑀 + 𝑁) + 1))) = ∅ |
128 | 126, 127 | eqtrdi 2795 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((0..^𝑗) ∩ (𝑗...(𝑀 + 𝑁))) = ∅) |
129 | 38 | peano2zd 12358 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((𝑀 + 𝑁) + 1) ∈ ℤ) |
130 | 29 | nn0ge0d 12226 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 0 ≤ 𝑗) |
131 | 129 | zred 12355 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((𝑀 + 𝑁) + 1) ∈ ℝ) |
132 | 38 | zred 12355 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ∈ ℝ) |
133 | | nn0addge2 12210 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℕ0)
→ 𝑁 ≤ (𝑀 + 𝑁)) |
134 | 43, 4, 133 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ≤ (𝑀 + 𝑁)) |
135 | 134 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑁 ≤ (𝑀 + 𝑁)) |
136 | 132 | lep1d 11836 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ≤ ((𝑀 + 𝑁) + 1)) |
137 | 44, 132, 131, 135, 136 | letrd 11062 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑁 ≤ ((𝑀 + 𝑁) + 1)) |
138 | 40, 44, 131, 47, 137 | letrd 11062 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ≤ ((𝑀 + 𝑁) + 1)) |
139 | 3, 129, 2, 130, 138 | elfzd 13176 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (0...((𝑀 + 𝑁) + 1))) |
140 | | fzosplit 13348 |
. . . . . . . . 9
⊢ (𝑗 ∈ (0...((𝑀 + 𝑁) + 1)) → (0..^((𝑀 + 𝑁) + 1)) = ((0..^𝑗) ∪ (𝑗..^((𝑀 + 𝑁) + 1)))) |
141 | 139, 140 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (0..^((𝑀 + 𝑁) + 1)) = ((0..^𝑗) ∪ (𝑗..^((𝑀 + 𝑁) + 1)))) |
142 | | fzval3 13384 |
. . . . . . . . 9
⊢ ((𝑀 + 𝑁) ∈ ℤ → (0...(𝑀 + 𝑁)) = (0..^((𝑀 + 𝑁) + 1))) |
143 | 38, 142 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (0...(𝑀 + 𝑁)) = (0..^((𝑀 + 𝑁) + 1))) |
144 | 125 | uneq2d 4093 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((0..^𝑗) ∪ (𝑗...(𝑀 + 𝑁))) = ((0..^𝑗) ∪ (𝑗..^((𝑀 + 𝑁) + 1)))) |
145 | 141, 143,
144 | 3eqtr4d 2788 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (0...(𝑀 + 𝑁)) = ((0..^𝑗) ∪ (𝑗...(𝑀 + 𝑁)))) |
146 | | fzfid 13621 |
. . . . . . . 8
⊢ (𝜑 → (0...(𝑀 + 𝑁)) ∈ Fin) |
147 | 146 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (0...(𝑀 + 𝑁)) ∈ Fin) |
148 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝜑) |
149 | 1 | adantrl 712 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝑗 ∈ (1...𝑁)) |
150 | | fz0ssnn0 13280 |
. . . . . . . . . 10
⊢
(0...(𝑀 + 𝑁)) ⊆
ℕ0 |
151 | | simprl 767 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝑘 ∈ (0...(𝑀 + 𝑁))) |
152 | 150, 151 | sselid 3915 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝑘 ∈ ℕ0) |
153 | 148, 149,
152, 81 | syl21anc 834 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝐵 ∈ ℂ) |
154 | 153 | anass1rs 651 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...(𝑀 + 𝑁))) → 𝐵 ∈ ℂ) |
155 | 128, 145,
147, 154 | fsumsplit 15381 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵 = (Σ𝑘 ∈ (0..^𝑗)𝐵 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵)) |
156 | | fzsum2sub.4 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0..^𝑗)) → 𝐵 = 0) |
157 | 156 | sumeq2dv 15343 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (0..^𝑗)𝐵 = Σ𝑘 ∈ (0..^𝑗)0) |
158 | | fzofi 13622 |
. . . . . . . . 9
⊢
(0..^𝑗) ∈
Fin |
159 | | sumz 15362 |
. . . . . . . . . 10
⊢
(((0..^𝑗) ⊆
(ℤ≥‘0) ∨ (0..^𝑗) ∈ Fin) → Σ𝑘 ∈ (0..^𝑗)0 = 0) |
160 | 159 | olcs 872 |
. . . . . . . . 9
⊢
((0..^𝑗) ∈ Fin
→ Σ𝑘 ∈
(0..^𝑗)0 =
0) |
161 | 158, 160 | ax-mp 5 |
. . . . . . . 8
⊢
Σ𝑘 ∈
(0..^𝑗)0 =
0 |
162 | 157, 161 | eqtrdi 2795 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (0..^𝑗)𝐵 = 0) |
163 | 162 | oveq1d 7270 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (Σ𝑘 ∈ (0..^𝑗)𝐵 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵) = (0 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵)) |
164 | 52, 82 | fsumcl 15373 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵 ∈ ℂ) |
165 | 164 | addid2d 11106 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (0 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵) = Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵) |
166 | 155, 163,
165 | 3eqtrrd 2783 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵) |
167 | 123, 166 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵) |
168 | 26, 167 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑖 ∈ (0...𝑀)𝐴 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵) |
169 | 168 | sumeq2dv 15343 |
. 2
⊢ (𝜑 → Σ𝑗 ∈ (1...𝑁)Σ𝑖 ∈ (0...𝑀)𝐴 = Σ𝑗 ∈ (1...𝑁)Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵) |
170 | | fzfid 13621 |
. . 3
⊢ (𝜑 → (0...𝑀) ∈ Fin) |
171 | | fzfid 13621 |
. . 3
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
172 | 24 | anasss 466 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ (1...𝑁) ∧ 𝑖 ∈ (0...𝑀))) → 𝐴 ∈ ℂ) |
173 | 172 | ancom2s 646 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (1...𝑁))) → 𝐴 ∈ ℂ) |
174 | 170, 171,
173 | fsumcom 15415 |
. 2
⊢ (𝜑 → Σ𝑖 ∈ (0...𝑀)Σ𝑗 ∈ (1...𝑁)𝐴 = Σ𝑗 ∈ (1...𝑁)Σ𝑖 ∈ (0...𝑀)𝐴) |
175 | 146, 171,
153 | fsumcom 15415 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑗 ∈ (1...𝑁)𝐵 = Σ𝑗 ∈ (1...𝑁)Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵) |
176 | 169, 174,
175 | 3eqtr4d 2788 |
1
⊢ (𝜑 → Σ𝑖 ∈ (0...𝑀)Σ𝑗 ∈ (1...𝑁)𝐴 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑗 ∈ (1...𝑁)𝐵) |