Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsum2dsub Structured version   Visualization version   GIF version

Theorem fsum2dsub 34585
Description: Lemma for breprexp 34611- Re-index a double sum, using difference of the initial indices. (Contributed by Thierry Arnoux, 7-Dec-2021.)
Hypotheses
Ref Expression
fzsum2sub.m (𝜑𝑀 ∈ ℕ0)
fzsum2sub.n (𝜑𝑁 ∈ ℕ0)
fzsum2sub.1 (𝑖 = (𝑘𝑗) → 𝐴 = 𝐵)
fzsum2sub.2 ((𝜑𝑖 ∈ (ℤ‘-𝑗) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ ℂ)
fzsum2sub.3 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) → 𝐵 = 0)
fzsum2sub.4 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0..^𝑗)) → 𝐵 = 0)
Assertion
Ref Expression
fsum2dsub (𝜑 → Σ𝑖 ∈ (0...𝑀𝑗 ∈ (1...𝑁)𝐴 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑗 ∈ (1...𝑁)𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑖   𝑖,𝑀,𝑗,𝑘   𝑖,𝑁,𝑗,𝑘   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑗,𝑘)

Proof of Theorem fsum2dsub
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
21elfzelzd 13540 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℤ)
3 0zd 12598 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → 0 ∈ ℤ)
4 fzsum2sub.m . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
54nn0zd 12612 . . . . . 6 (𝜑𝑀 ∈ ℤ)
65adantr 480 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℤ)
7 simpll 766 . . . . . 6 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝜑)
8 fz1ssnn 13570 . . . . . . . . . . . 12 (1...𝑁) ⊆ ℕ
9 nnssnn0 12502 . . . . . . . . . . . 12 ℕ ⊆ ℕ0
108, 9sstri 3968 . . . . . . . . . . 11 (1...𝑁) ⊆ ℕ0
1110, 1sselid 3956 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ0)
12 nn0uz 12892 . . . . . . . . . 10 0 = (ℤ‘0)
1311, 12eleqtrdi 2844 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (ℤ‘0))
14 neg0 11527 . . . . . . . . . 10 -0 = 0
15 uzneg 12870 . . . . . . . . . 10 (𝑗 ∈ (ℤ‘0) → -0 ∈ (ℤ‘-𝑗))
1614, 15eqeltrrid 2839 . . . . . . . . 9 (𝑗 ∈ (ℤ‘0) → 0 ∈ (ℤ‘-𝑗))
17 fzss1 13578 . . . . . . . . 9 (0 ∈ (ℤ‘-𝑗) → (0...𝑀) ⊆ (-𝑗...𝑀))
1813, 16, 173syl 18 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (0...𝑀) ⊆ (-𝑗...𝑀))
19 fzssuz 13580 . . . . . . . 8 (-𝑗...𝑀) ⊆ (ℤ‘-𝑗)
2018, 19sstrdi 3971 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (0...𝑀) ⊆ (ℤ‘-𝑗))
2120sselda 3958 . . . . . 6 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝑖 ∈ (ℤ‘-𝑗))
221adantr 480 . . . . . 6 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝑗 ∈ (1...𝑁))
23 fzsum2sub.2 . . . . . 6 ((𝜑𝑖 ∈ (ℤ‘-𝑗) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ ℂ)
247, 21, 22, 23syl3anc 1373 . . . . 5 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝐴 ∈ ℂ)
25 fzsum2sub.1 . . . . 5 (𝑖 = (𝑘𝑗) → 𝐴 = 𝐵)
262, 3, 6, 24, 25fsumshft 15794 . . . 4 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑖 ∈ (0...𝑀)𝐴 = Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵)
274adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℕ0)
288, 1sselid 3956 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ)
2928nnnn0d 12560 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ0)
3027, 29nn0addcld 12564 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ ℕ0)
3130nn0red 12561 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ ℝ)
3231ltp1d 12170 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) < ((𝑀 + 𝑗) + 1))
33 fzdisj 13566 . . . . . . . 8 ((𝑀 + 𝑗) < ((𝑀 + 𝑗) + 1) → ((𝑗...(𝑀 + 𝑗)) ∩ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) = ∅)
3432, 33syl 17 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝑗...(𝑀 + 𝑗)) ∩ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) = ∅)
35 fzsum2sub.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
3635nn0zd 12612 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
375, 36zaddcld 12699 . . . . . . . . . 10 (𝜑 → (𝑀 + 𝑁) ∈ ℤ)
3837adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ∈ ℤ)
3930nn0zd 12612 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ ℤ)
4028nnred 12253 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℝ)
41 nn0addge2 12546 . . . . . . . . . 10 ((𝑗 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → 𝑗 ≤ (𝑀 + 𝑗))
4240, 27, 41syl2anc 584 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ≤ (𝑀 + 𝑗))
4335nn0red 12561 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ∈ ℝ)
4527nn0red 12561 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℝ)
46 elfzle2 13543 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑁) → 𝑗𝑁)
4746adantl 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗𝑁)
4840, 44, 45, 47leadd2dd 11850 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ≤ (𝑀 + 𝑁))
492, 38, 39, 42, 48elfzd 13530 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ (𝑗...(𝑀 + 𝑁)))
50 fzsplit 13565 . . . . . . . 8 ((𝑀 + 𝑗) ∈ (𝑗...(𝑀 + 𝑁)) → (𝑗...(𝑀 + 𝑁)) = ((𝑗...(𝑀 + 𝑗)) ∪ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))))
5149, 50syl 17 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑁)) = ((𝑗...(𝑀 + 𝑗)) ∪ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))))
52 fzfid 13989 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑁)) ∈ Fin)
53 simpll 766 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝜑)
541adantr 480 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑗 ∈ (1...𝑁))
5510, 54sselid 3956 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑗 ∈ ℕ0)
56 fz2ssnn0 32708 . . . . . . . . . 10 (𝑗 ∈ ℕ0 → (𝑗...(𝑀 + 𝑁)) ⊆ ℕ0)
5755, 56syl 17 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → (𝑗...(𝑀 + 𝑁)) ⊆ ℕ0)
58 simpr 484 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑘 ∈ (𝑗...(𝑀 + 𝑁)))
5957, 58sseldd 3959 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑘 ∈ ℕ0)
6025eleq1d 2819 . . . . . . . . 9 (𝑖 = (𝑘𝑗) → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
61 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (ℤ‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝜑)
62 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (ℤ‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝑖 ∈ (ℤ‘-𝑗))
63 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (ℤ‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
6461, 62, 63, 23syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (ℤ‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ ℂ)
6564an32s 652 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (ℤ‘-𝑗)) → 𝐴 ∈ ℂ)
6665ralrimiva 3132 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → ∀𝑖 ∈ (ℤ‘-𝑗)𝐴 ∈ ℂ)
6766adantr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → ∀𝑖 ∈ (ℤ‘-𝑗)𝐴 ∈ ℂ)
68 nnsscn 12243 . . . . . . . . . . . . 13 ℕ ⊆ ℂ
698, 68sstri 3968 . . . . . . . . . . . 12 (1...𝑁) ⊆ ℂ
70 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ (1...𝑁))
7169, 70sselid 3956 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ ℂ)
72 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
7372nn0cnd 12562 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
7471, 73negsubdi2d 11608 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → -(𝑗𝑘) = (𝑘𝑗))
7570elfzelzd 13540 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ ℤ)
76 eluzmn 12857 . . . . . . . . . . . 12 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ (ℤ‘(𝑗𝑘)))
7775, 72, 76syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ (ℤ‘(𝑗𝑘)))
78 uzneg 12870 . . . . . . . . . . 11 (𝑗 ∈ (ℤ‘(𝑗𝑘)) → -(𝑗𝑘) ∈ (ℤ‘-𝑗))
7977, 78syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → -(𝑗𝑘) ∈ (ℤ‘-𝑗))
8074, 79eqeltrrd 2835 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → (𝑘𝑗) ∈ (ℤ‘-𝑗))
8160, 67, 80rspcdva 3602 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
8253, 54, 59, 81syl21anc 837 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝐵 ∈ ℂ)
8334, 51, 52, 82fsumsplit 15755 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵 = (Σ𝑘 ∈ (𝑗...(𝑀 + 𝑗))𝐵 + Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵))
842zcnd 12696 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℂ)
8584addlidd 11434 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → (0 + 𝑗) = 𝑗)
8685oveq1d 7418 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → ((0 + 𝑗)...(𝑀 + 𝑗)) = (𝑗...(𝑀 + 𝑗)))
8786eqcomd 2741 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑗)) = ((0 + 𝑗)...(𝑀 + 𝑗)))
8887sumeq1d 15714 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑗))𝐵 = Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵)
89 fzsum2sub.3 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) → 𝐵 = 0)
9089sumeq2dv 15716 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵 = Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0)
91 fzfi 13988 . . . . . . . . 9 (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ∈ Fin
92 sumz 15736 . . . . . . . . . 10 (((((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ⊆ (ℤ‘0) ∨ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ∈ Fin) → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0 = 0)
9392olcs 876 . . . . . . . . 9 ((((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ∈ Fin → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0 = 0)
9491, 93ax-mp 5 . . . . . . . 8 Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0 = 0
9590, 94eqtrdi 2786 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵 = 0)
9688, 95oveq12d 7421 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (Σ𝑘 ∈ (𝑗...(𝑀 + 𝑗))𝐵 + Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵) = (Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 + 0))
97 fzfid 13989 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → ((0 + 𝑗)...(𝑀 + 𝑗)) ∈ Fin)
98 simpll 766 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝜑)
991adantr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑗 ∈ (1...𝑁))
100 elfzuz3 13536 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑁) → 𝑁 ∈ (ℤ𝑗))
101100adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ∈ (ℤ𝑗))
102 eluzadd 12879 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ𝑗) ∧ 𝑀 ∈ ℤ) → (𝑁 + 𝑀) ∈ (ℤ‘(𝑗 + 𝑀)))
103101, 6, 102syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑁 + 𝑀) ∈ (ℤ‘(𝑗 + 𝑀)))
10435nn0cnd 12562 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℂ)
105104adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ∈ ℂ)
106 zsscn 12594 . . . . . . . . . . . . . . . 16 ℤ ⊆ ℂ
107106, 6sselid 3956 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℂ)
108105, 107addcomd 11435 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑁 + 𝑀) = (𝑀 + 𝑁))
10984, 107addcomd 11435 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗 + 𝑀) = (𝑀 + 𝑗))
110109fveq2d 6879 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑁)) → (ℤ‘(𝑗 + 𝑀)) = (ℤ‘(𝑀 + 𝑗)))
111103, 108, 1103eltr3d 2848 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑗)))
112111adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → (𝑀 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑗)))
113 fzss2 13579 . . . . . . . . . . . 12 ((𝑀 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑗)) → (𝑗...(𝑀 + 𝑗)) ⊆ (𝑗...(𝑀 + 𝑁)))
114112, 113syl 17 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → (𝑗...(𝑀 + 𝑗)) ⊆ (𝑗...(𝑀 + 𝑁)))
115 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗)))
11686adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → ((0 + 𝑗)...(𝑀 + 𝑗)) = (𝑗...(𝑀 + 𝑗)))
117115, 116eleqtrd 2836 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ (𝑗...(𝑀 + 𝑗)))
118114, 117sseldd 3959 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ (𝑗...(𝑀 + 𝑁)))
11998, 99, 118, 59syl21anc 837 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ ℕ0)
12098, 99, 119, 81syl21anc 837 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝐵 ∈ ℂ)
12197, 120fsumcl 15747 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 ∈ ℂ)
122121addridd 11433 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 + 0) = Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵)
12383, 96, 1223eqtrrd 2775 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 = Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵)
124 fzval3 13748 . . . . . . . . . 10 ((𝑀 + 𝑁) ∈ ℤ → (𝑗...(𝑀 + 𝑁)) = (𝑗..^((𝑀 + 𝑁) + 1)))
12538, 124syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑁)) = (𝑗..^((𝑀 + 𝑁) + 1)))
126125ineq2d 4195 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → ((0..^𝑗) ∩ (𝑗...(𝑀 + 𝑁))) = ((0..^𝑗) ∩ (𝑗..^((𝑀 + 𝑁) + 1))))
127 fzodisj 13708 . . . . . . . 8 ((0..^𝑗) ∩ (𝑗..^((𝑀 + 𝑁) + 1))) = ∅
128126, 127eqtrdi 2786 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → ((0..^𝑗) ∩ (𝑗...(𝑀 + 𝑁))) = ∅)
12938peano2zd 12698 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝑀 + 𝑁) + 1) ∈ ℤ)
13029nn0ge0d 12563 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 0 ≤ 𝑗)
131129zred 12695 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝑀 + 𝑁) + 1) ∈ ℝ)
13238zred 12695 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ∈ ℝ)
133 nn0addge2 12546 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → 𝑁 ≤ (𝑀 + 𝑁))
13443, 4, 133syl2anc 584 . . . . . . . . . . . . 13 (𝜑𝑁 ≤ (𝑀 + 𝑁))
135134adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ≤ (𝑀 + 𝑁))
136132lep1d 12171 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ≤ ((𝑀 + 𝑁) + 1))
13744, 132, 131, 135, 136letrd 11390 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ≤ ((𝑀 + 𝑁) + 1))
13840, 44, 131, 47, 137letrd 11390 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ≤ ((𝑀 + 𝑁) + 1))
1393, 129, 2, 130, 138elfzd 13530 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (0...((𝑀 + 𝑁) + 1)))
140 fzosplit 13707 . . . . . . . . 9 (𝑗 ∈ (0...((𝑀 + 𝑁) + 1)) → (0..^((𝑀 + 𝑁) + 1)) = ((0..^𝑗) ∪ (𝑗..^((𝑀 + 𝑁) + 1))))
141139, 140syl 17 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (0..^((𝑀 + 𝑁) + 1)) = ((0..^𝑗) ∪ (𝑗..^((𝑀 + 𝑁) + 1))))
142 fzval3 13748 . . . . . . . . 9 ((𝑀 + 𝑁) ∈ ℤ → (0...(𝑀 + 𝑁)) = (0..^((𝑀 + 𝑁) + 1)))
14338, 142syl 17 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (0...(𝑀 + 𝑁)) = (0..^((𝑀 + 𝑁) + 1)))
144125uneq2d 4143 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → ((0..^𝑗) ∪ (𝑗...(𝑀 + 𝑁))) = ((0..^𝑗) ∪ (𝑗..^((𝑀 + 𝑁) + 1))))
145141, 143, 1443eqtr4d 2780 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (0...(𝑀 + 𝑁)) = ((0..^𝑗) ∪ (𝑗...(𝑀 + 𝑁))))
146 fzfid 13989 . . . . . . . 8 (𝜑 → (0...(𝑀 + 𝑁)) ∈ Fin)
147146adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (0...(𝑀 + 𝑁)) ∈ Fin)
148 simpl 482 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝜑)
1491adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝑗 ∈ (1...𝑁))
150 fz0ssnn0 13637 . . . . . . . . . 10 (0...(𝑀 + 𝑁)) ⊆ ℕ0
151 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
152150, 151sselid 3956 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝑘 ∈ ℕ0)
153148, 149, 152, 81syl21anc 837 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝐵 ∈ ℂ)
154153anass1rs 655 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...(𝑀 + 𝑁))) → 𝐵 ∈ ℂ)
155128, 145, 147, 154fsumsplit 15755 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵 = (Σ𝑘 ∈ (0..^𝑗)𝐵 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵))
156 fzsum2sub.4 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0..^𝑗)) → 𝐵 = 0)
157156sumeq2dv 15716 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (0..^𝑗)𝐵 = Σ𝑘 ∈ (0..^𝑗)0)
158 fzofi 13990 . . . . . . . . 9 (0..^𝑗) ∈ Fin
159 sumz 15736 . . . . . . . . . 10 (((0..^𝑗) ⊆ (ℤ‘0) ∨ (0..^𝑗) ∈ Fin) → Σ𝑘 ∈ (0..^𝑗)0 = 0)
160159olcs 876 . . . . . . . . 9 ((0..^𝑗) ∈ Fin → Σ𝑘 ∈ (0..^𝑗)0 = 0)
161158, 160ax-mp 5 . . . . . . . 8 Σ𝑘 ∈ (0..^𝑗)0 = 0
162157, 161eqtrdi 2786 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (0..^𝑗)𝐵 = 0)
163162oveq1d 7418 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (Σ𝑘 ∈ (0..^𝑗)𝐵 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵) = (0 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵))
16452, 82fsumcl 15747 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵 ∈ ℂ)
165164addlidd 11434 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (0 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵) = Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵)
166155, 163, 1653eqtrrd 2775 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
167123, 166eqtrd 2770 . . . 4 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
16826, 167eqtrd 2770 . . 3 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑖 ∈ (0...𝑀)𝐴 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
169168sumeq2dv 15716 . 2 (𝜑 → Σ𝑗 ∈ (1...𝑁𝑖 ∈ (0...𝑀)𝐴 = Σ𝑗 ∈ (1...𝑁𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
170 fzfid 13989 . . 3 (𝜑 → (0...𝑀) ∈ Fin)
171 fzfid 13989 . . 3 (𝜑 → (1...𝑁) ∈ Fin)
17224anasss 466 . . . 4 ((𝜑 ∧ (𝑗 ∈ (1...𝑁) ∧ 𝑖 ∈ (0...𝑀))) → 𝐴 ∈ ℂ)
173172ancom2s 650 . . 3 ((𝜑 ∧ (𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (1...𝑁))) → 𝐴 ∈ ℂ)
174170, 171, 173fsumcom 15789 . 2 (𝜑 → Σ𝑖 ∈ (0...𝑀𝑗 ∈ (1...𝑁)𝐴 = Σ𝑗 ∈ (1...𝑁𝑖 ∈ (0...𝑀)𝐴)
175146, 171, 153fsumcom 15789 . 2 (𝜑 → Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑗 ∈ (1...𝑁)𝐵 = Σ𝑗 ∈ (1...𝑁𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
176169, 174, 1753eqtr4d 2780 1 (𝜑 → Σ𝑖 ∈ (0...𝑀𝑗 ∈ (1...𝑁)𝐴 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑗 ∈ (1...𝑁)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  cun 3924  cin 3925  wss 3926  c0 4308   class class class wbr 5119  cfv 6530  (class class class)co 7403  Fincfn 8957  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   < clt 11267  cle 11268  cmin 11464  -cneg 11465  cn 12238  0cn0 12499  cz 12586  cuz 12850  ...cfz 13522  ..^cfzo 13669  Σcsu 15700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-sum 15701
This theorem is referenced by:  breprexplemc  34610
  Copyright terms: Public domain W3C validator