Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsum2dsub Structured version   Visualization version   GIF version

Theorem fsum2dsub 33220
Description: Lemma for breprexp 33246- Re-index a double sum, using difference of the initial indices. (Contributed by Thierry Arnoux, 7-Dec-2021.)
Hypotheses
Ref Expression
fzsum2sub.m (𝜑𝑀 ∈ ℕ0)
fzsum2sub.n (𝜑𝑁 ∈ ℕ0)
fzsum2sub.1 (𝑖 = (𝑘𝑗) → 𝐴 = 𝐵)
fzsum2sub.2 ((𝜑𝑖 ∈ (ℤ‘-𝑗) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ ℂ)
fzsum2sub.3 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) → 𝐵 = 0)
fzsum2sub.4 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0..^𝑗)) → 𝐵 = 0)
Assertion
Ref Expression
fsum2dsub (𝜑 → Σ𝑖 ∈ (0...𝑀𝑗 ∈ (1...𝑁)𝐴 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑗 ∈ (1...𝑁)𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑖   𝑖,𝑀,𝑗,𝑘   𝑖,𝑁,𝑗,𝑘   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑗,𝑘)

Proof of Theorem fsum2dsub
StepHypRef Expression
1 simpr 485 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
21elfzelzd 13442 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℤ)
3 0zd 12511 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → 0 ∈ ℤ)
4 fzsum2sub.m . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
54nn0zd 12525 . . . . . 6 (𝜑𝑀 ∈ ℤ)
65adantr 481 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℤ)
7 simpll 765 . . . . . 6 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝜑)
8 fz1ssnn 13472 . . . . . . . . . . . 12 (1...𝑁) ⊆ ℕ
9 nnssnn0 12416 . . . . . . . . . . . 12 ℕ ⊆ ℕ0
108, 9sstri 3953 . . . . . . . . . . 11 (1...𝑁) ⊆ ℕ0
1110, 1sselid 3942 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ0)
12 nn0uz 12805 . . . . . . . . . 10 0 = (ℤ‘0)
1311, 12eleqtrdi 2848 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (ℤ‘0))
14 neg0 11447 . . . . . . . . . 10 -0 = 0
15 uzneg 12783 . . . . . . . . . 10 (𝑗 ∈ (ℤ‘0) → -0 ∈ (ℤ‘-𝑗))
1614, 15eqeltrrid 2843 . . . . . . . . 9 (𝑗 ∈ (ℤ‘0) → 0 ∈ (ℤ‘-𝑗))
17 fzss1 13480 . . . . . . . . 9 (0 ∈ (ℤ‘-𝑗) → (0...𝑀) ⊆ (-𝑗...𝑀))
1813, 16, 173syl 18 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (0...𝑀) ⊆ (-𝑗...𝑀))
19 fzssuz 13482 . . . . . . . 8 (-𝑗...𝑀) ⊆ (ℤ‘-𝑗)
2018, 19sstrdi 3956 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (0...𝑀) ⊆ (ℤ‘-𝑗))
2120sselda 3944 . . . . . 6 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝑖 ∈ (ℤ‘-𝑗))
221adantr 481 . . . . . 6 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝑗 ∈ (1...𝑁))
23 fzsum2sub.2 . . . . . 6 ((𝜑𝑖 ∈ (ℤ‘-𝑗) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ ℂ)
247, 21, 22, 23syl3anc 1371 . . . . 5 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝐴 ∈ ℂ)
25 fzsum2sub.1 . . . . 5 (𝑖 = (𝑘𝑗) → 𝐴 = 𝐵)
262, 3, 6, 24, 25fsumshft 15665 . . . 4 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑖 ∈ (0...𝑀)𝐴 = Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵)
274adantr 481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℕ0)
288, 1sselid 3942 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ)
2928nnnn0d 12473 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ0)
3027, 29nn0addcld 12477 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ ℕ0)
3130nn0red 12474 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ ℝ)
3231ltp1d 12085 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) < ((𝑀 + 𝑗) + 1))
33 fzdisj 13468 . . . . . . . 8 ((𝑀 + 𝑗) < ((𝑀 + 𝑗) + 1) → ((𝑗...(𝑀 + 𝑗)) ∩ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) = ∅)
3432, 33syl 17 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝑗...(𝑀 + 𝑗)) ∩ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) = ∅)
35 fzsum2sub.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
3635nn0zd 12525 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
375, 36zaddcld 12611 . . . . . . . . . 10 (𝜑 → (𝑀 + 𝑁) ∈ ℤ)
3837adantr 481 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ∈ ℤ)
3930nn0zd 12525 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ ℤ)
4028nnred 12168 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℝ)
41 nn0addge2 12460 . . . . . . . . . 10 ((𝑗 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → 𝑗 ≤ (𝑀 + 𝑗))
4240, 27, 41syl2anc 584 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ≤ (𝑀 + 𝑗))
4335nn0red 12474 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
4443adantr 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ∈ ℝ)
4527nn0red 12474 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℝ)
46 elfzle2 13445 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑁) → 𝑗𝑁)
4746adantl 482 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗𝑁)
4840, 44, 45, 47leadd2dd 11770 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ≤ (𝑀 + 𝑁))
492, 38, 39, 42, 48elfzd 13432 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ (𝑗...(𝑀 + 𝑁)))
50 fzsplit 13467 . . . . . . . 8 ((𝑀 + 𝑗) ∈ (𝑗...(𝑀 + 𝑁)) → (𝑗...(𝑀 + 𝑁)) = ((𝑗...(𝑀 + 𝑗)) ∪ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))))
5149, 50syl 17 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑁)) = ((𝑗...(𝑀 + 𝑗)) ∪ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))))
52 fzfid 13878 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑁)) ∈ Fin)
53 simpll 765 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝜑)
541adantr 481 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑗 ∈ (1...𝑁))
5510, 54sselid 3942 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑗 ∈ ℕ0)
56 fz2ssnn0 31688 . . . . . . . . . 10 (𝑗 ∈ ℕ0 → (𝑗...(𝑀 + 𝑁)) ⊆ ℕ0)
5755, 56syl 17 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → (𝑗...(𝑀 + 𝑁)) ⊆ ℕ0)
58 simpr 485 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑘 ∈ (𝑗...(𝑀 + 𝑁)))
5957, 58sseldd 3945 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑘 ∈ ℕ0)
6025eleq1d 2822 . . . . . . . . 9 (𝑖 = (𝑘𝑗) → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
61 simpll 765 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (ℤ‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝜑)
62 simplr 767 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (ℤ‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝑖 ∈ (ℤ‘-𝑗))
63 simpr 485 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (ℤ‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
6461, 62, 63, 23syl3anc 1371 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (ℤ‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ ℂ)
6564an32s 650 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (ℤ‘-𝑗)) → 𝐴 ∈ ℂ)
6665ralrimiva 3143 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → ∀𝑖 ∈ (ℤ‘-𝑗)𝐴 ∈ ℂ)
6766adantr 481 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → ∀𝑖 ∈ (ℤ‘-𝑗)𝐴 ∈ ℂ)
68 nnsscn 12158 . . . . . . . . . . . . 13 ℕ ⊆ ℂ
698, 68sstri 3953 . . . . . . . . . . . 12 (1...𝑁) ⊆ ℂ
70 simplr 767 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ (1...𝑁))
7169, 70sselid 3942 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ ℂ)
72 simpr 485 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
7372nn0cnd 12475 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
7471, 73negsubdi2d 11528 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → -(𝑗𝑘) = (𝑘𝑗))
7570elfzelzd 13442 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ ℤ)
76 eluzmn 12770 . . . . . . . . . . . 12 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ (ℤ‘(𝑗𝑘)))
7775, 72, 76syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ (ℤ‘(𝑗𝑘)))
78 uzneg 12783 . . . . . . . . . . 11 (𝑗 ∈ (ℤ‘(𝑗𝑘)) → -(𝑗𝑘) ∈ (ℤ‘-𝑗))
7977, 78syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → -(𝑗𝑘) ∈ (ℤ‘-𝑗))
8074, 79eqeltrrd 2839 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → (𝑘𝑗) ∈ (ℤ‘-𝑗))
8160, 67, 80rspcdva 3582 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
8253, 54, 59, 81syl21anc 836 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝐵 ∈ ℂ)
8334, 51, 52, 82fsumsplit 15626 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵 = (Σ𝑘 ∈ (𝑗...(𝑀 + 𝑗))𝐵 + Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵))
842zcnd 12608 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℂ)
8584addid2d 11356 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → (0 + 𝑗) = 𝑗)
8685oveq1d 7372 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → ((0 + 𝑗)...(𝑀 + 𝑗)) = (𝑗...(𝑀 + 𝑗)))
8786eqcomd 2742 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑗)) = ((0 + 𝑗)...(𝑀 + 𝑗)))
8887sumeq1d 15586 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑗))𝐵 = Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵)
89 fzsum2sub.3 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) → 𝐵 = 0)
9089sumeq2dv 15588 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵 = Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0)
91 fzfi 13877 . . . . . . . . 9 (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ∈ Fin
92 sumz 15607 . . . . . . . . . 10 (((((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ⊆ (ℤ‘0) ∨ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ∈ Fin) → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0 = 0)
9392olcs 874 . . . . . . . . 9 ((((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ∈ Fin → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0 = 0)
9491, 93ax-mp 5 . . . . . . . 8 Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0 = 0
9590, 94eqtrdi 2792 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵 = 0)
9688, 95oveq12d 7375 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (Σ𝑘 ∈ (𝑗...(𝑀 + 𝑗))𝐵 + Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵) = (Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 + 0))
97 fzfid 13878 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → ((0 + 𝑗)...(𝑀 + 𝑗)) ∈ Fin)
98 simpll 765 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝜑)
991adantr 481 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑗 ∈ (1...𝑁))
100 elfzuz3 13438 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑁) → 𝑁 ∈ (ℤ𝑗))
101100adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ∈ (ℤ𝑗))
102 eluzadd 12792 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ𝑗) ∧ 𝑀 ∈ ℤ) → (𝑁 + 𝑀) ∈ (ℤ‘(𝑗 + 𝑀)))
103101, 6, 102syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑁 + 𝑀) ∈ (ℤ‘(𝑗 + 𝑀)))
10435nn0cnd 12475 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℂ)
105104adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ∈ ℂ)
106 zsscn 12507 . . . . . . . . . . . . . . . 16 ℤ ⊆ ℂ
107106, 6sselid 3942 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℂ)
108105, 107addcomd 11357 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑁 + 𝑀) = (𝑀 + 𝑁))
10984, 107addcomd 11357 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗 + 𝑀) = (𝑀 + 𝑗))
110109fveq2d 6846 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑁)) → (ℤ‘(𝑗 + 𝑀)) = (ℤ‘(𝑀 + 𝑗)))
111103, 108, 1103eltr3d 2852 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑗)))
112111adantr 481 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → (𝑀 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑗)))
113 fzss2 13481 . . . . . . . . . . . 12 ((𝑀 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑗)) → (𝑗...(𝑀 + 𝑗)) ⊆ (𝑗...(𝑀 + 𝑁)))
114112, 113syl 17 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → (𝑗...(𝑀 + 𝑗)) ⊆ (𝑗...(𝑀 + 𝑁)))
115 simpr 485 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗)))
11686adantr 481 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → ((0 + 𝑗)...(𝑀 + 𝑗)) = (𝑗...(𝑀 + 𝑗)))
117115, 116eleqtrd 2840 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ (𝑗...(𝑀 + 𝑗)))
118114, 117sseldd 3945 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ (𝑗...(𝑀 + 𝑁)))
11998, 99, 118, 59syl21anc 836 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ ℕ0)
12098, 99, 119, 81syl21anc 836 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝐵 ∈ ℂ)
12197, 120fsumcl 15618 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 ∈ ℂ)
122121addid1d 11355 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 + 0) = Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵)
12383, 96, 1223eqtrrd 2781 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 = Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵)
124 fzval3 13641 . . . . . . . . . 10 ((𝑀 + 𝑁) ∈ ℤ → (𝑗...(𝑀 + 𝑁)) = (𝑗..^((𝑀 + 𝑁) + 1)))
12538, 124syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑁)) = (𝑗..^((𝑀 + 𝑁) + 1)))
126125ineq2d 4172 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → ((0..^𝑗) ∩ (𝑗...(𝑀 + 𝑁))) = ((0..^𝑗) ∩ (𝑗..^((𝑀 + 𝑁) + 1))))
127 fzodisj 13606 . . . . . . . 8 ((0..^𝑗) ∩ (𝑗..^((𝑀 + 𝑁) + 1))) = ∅
128126, 127eqtrdi 2792 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → ((0..^𝑗) ∩ (𝑗...(𝑀 + 𝑁))) = ∅)
12938peano2zd 12610 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝑀 + 𝑁) + 1) ∈ ℤ)
13029nn0ge0d 12476 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 0 ≤ 𝑗)
131129zred 12607 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝑀 + 𝑁) + 1) ∈ ℝ)
13238zred 12607 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ∈ ℝ)
133 nn0addge2 12460 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → 𝑁 ≤ (𝑀 + 𝑁))
13443, 4, 133syl2anc 584 . . . . . . . . . . . . 13 (𝜑𝑁 ≤ (𝑀 + 𝑁))
135134adantr 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ≤ (𝑀 + 𝑁))
136132lep1d 12086 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ≤ ((𝑀 + 𝑁) + 1))
13744, 132, 131, 135, 136letrd 11312 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ≤ ((𝑀 + 𝑁) + 1))
13840, 44, 131, 47, 137letrd 11312 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ≤ ((𝑀 + 𝑁) + 1))
1393, 129, 2, 130, 138elfzd 13432 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (0...((𝑀 + 𝑁) + 1)))
140 fzosplit 13605 . . . . . . . . 9 (𝑗 ∈ (0...((𝑀 + 𝑁) + 1)) → (0..^((𝑀 + 𝑁) + 1)) = ((0..^𝑗) ∪ (𝑗..^((𝑀 + 𝑁) + 1))))
141139, 140syl 17 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (0..^((𝑀 + 𝑁) + 1)) = ((0..^𝑗) ∪ (𝑗..^((𝑀 + 𝑁) + 1))))
142 fzval3 13641 . . . . . . . . 9 ((𝑀 + 𝑁) ∈ ℤ → (0...(𝑀 + 𝑁)) = (0..^((𝑀 + 𝑁) + 1)))
14338, 142syl 17 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (0...(𝑀 + 𝑁)) = (0..^((𝑀 + 𝑁) + 1)))
144125uneq2d 4123 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → ((0..^𝑗) ∪ (𝑗...(𝑀 + 𝑁))) = ((0..^𝑗) ∪ (𝑗..^((𝑀 + 𝑁) + 1))))
145141, 143, 1443eqtr4d 2786 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (0...(𝑀 + 𝑁)) = ((0..^𝑗) ∪ (𝑗...(𝑀 + 𝑁))))
146 fzfid 13878 . . . . . . . 8 (𝜑 → (0...(𝑀 + 𝑁)) ∈ Fin)
147146adantr 481 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (0...(𝑀 + 𝑁)) ∈ Fin)
148 simpl 483 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝜑)
1491adantrl 714 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝑗 ∈ (1...𝑁))
150 fz0ssnn0 13536 . . . . . . . . . 10 (0...(𝑀 + 𝑁)) ⊆ ℕ0
151 simprl 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
152150, 151sselid 3942 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝑘 ∈ ℕ0)
153148, 149, 152, 81syl21anc 836 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝐵 ∈ ℂ)
154153anass1rs 653 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...(𝑀 + 𝑁))) → 𝐵 ∈ ℂ)
155128, 145, 147, 154fsumsplit 15626 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵 = (Σ𝑘 ∈ (0..^𝑗)𝐵 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵))
156 fzsum2sub.4 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0..^𝑗)) → 𝐵 = 0)
157156sumeq2dv 15588 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (0..^𝑗)𝐵 = Σ𝑘 ∈ (0..^𝑗)0)
158 fzofi 13879 . . . . . . . . 9 (0..^𝑗) ∈ Fin
159 sumz 15607 . . . . . . . . . 10 (((0..^𝑗) ⊆ (ℤ‘0) ∨ (0..^𝑗) ∈ Fin) → Σ𝑘 ∈ (0..^𝑗)0 = 0)
160159olcs 874 . . . . . . . . 9 ((0..^𝑗) ∈ Fin → Σ𝑘 ∈ (0..^𝑗)0 = 0)
161158, 160ax-mp 5 . . . . . . . 8 Σ𝑘 ∈ (0..^𝑗)0 = 0
162157, 161eqtrdi 2792 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (0..^𝑗)𝐵 = 0)
163162oveq1d 7372 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (Σ𝑘 ∈ (0..^𝑗)𝐵 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵) = (0 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵))
16452, 82fsumcl 15618 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵 ∈ ℂ)
165164addid2d 11356 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (0 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵) = Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵)
166155, 163, 1653eqtrrd 2781 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
167123, 166eqtrd 2776 . . . 4 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
16826, 167eqtrd 2776 . . 3 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑖 ∈ (0...𝑀)𝐴 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
169168sumeq2dv 15588 . 2 (𝜑 → Σ𝑗 ∈ (1...𝑁𝑖 ∈ (0...𝑀)𝐴 = Σ𝑗 ∈ (1...𝑁𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
170 fzfid 13878 . . 3 (𝜑 → (0...𝑀) ∈ Fin)
171 fzfid 13878 . . 3 (𝜑 → (1...𝑁) ∈ Fin)
17224anasss 467 . . . 4 ((𝜑 ∧ (𝑗 ∈ (1...𝑁) ∧ 𝑖 ∈ (0...𝑀))) → 𝐴 ∈ ℂ)
173172ancom2s 648 . . 3 ((𝜑 ∧ (𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (1...𝑁))) → 𝐴 ∈ ℂ)
174170, 171, 173fsumcom 15660 . 2 (𝜑 → Σ𝑖 ∈ (0...𝑀𝑗 ∈ (1...𝑁)𝐴 = Σ𝑗 ∈ (1...𝑁𝑖 ∈ (0...𝑀)𝐴)
175146, 171, 153fsumcom 15660 . 2 (𝜑 → Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑗 ∈ (1...𝑁)𝐵 = Σ𝑗 ∈ (1...𝑁𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
176169, 174, 1753eqtr4d 2786 1 (𝜑 → Σ𝑖 ∈ (0...𝑀𝑗 ∈ (1...𝑁)𝐴 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑗 ∈ (1...𝑁)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  cun 3908  cin 3909  wss 3910  c0 4282   class class class wbr 5105  cfv 6496  (class class class)co 7357  Fincfn 8883  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385  -cneg 11386  cn 12153  0cn0 12413  cz 12499  cuz 12763  ...cfz 13424  ..^cfzo 13567  Σcsu 15570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571
This theorem is referenced by:  breprexplemc  33245
  Copyright terms: Public domain W3C validator