Proof of Theorem fsum2dsub
Step | Hyp | Ref
| Expression |
1 | | fzssz 12748 |
. . . . . 6
⊢
(1...𝑁) ⊆
ℤ |
2 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁)) |
3 | 1, 2 | sseldi 3882 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℤ) |
4 | | 0zd 11830 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 0 ∈ ℤ) |
5 | | fzsum2sub.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
6 | 5 | nn0zd 11923 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
7 | 6 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℤ) |
8 | | simpll 763 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝜑) |
9 | | fz1ssnn 12777 |
. . . . . . . . . . . 12
⊢
(1...𝑁) ⊆
ℕ |
10 | | nnssnn0 11737 |
. . . . . . . . . . . 12
⊢ ℕ
⊆ ℕ0 |
11 | 9, 10 | sstri 3893 |
. . . . . . . . . . 11
⊢
(1...𝑁) ⊆
ℕ0 |
12 | 11, 2 | sseldi 3882 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ0) |
13 | | nn0uz 12118 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
14 | 12, 13 | syl6eleq 2891 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈
(ℤ≥‘0)) |
15 | | neg0 10769 |
. . . . . . . . . 10
⊢ -0 =
0 |
16 | | uzneg 12101 |
. . . . . . . . . 10
⊢ (𝑗 ∈
(ℤ≥‘0) → -0 ∈
(ℤ≥‘-𝑗)) |
17 | 15, 16 | syl5eqelr 2886 |
. . . . . . . . 9
⊢ (𝑗 ∈
(ℤ≥‘0) → 0 ∈
(ℤ≥‘-𝑗)) |
18 | | fzss1 12785 |
. . . . . . . . 9
⊢ (0 ∈
(ℤ≥‘-𝑗) → (0...𝑀) ⊆ (-𝑗...𝑀)) |
19 | 14, 17, 18 | 3syl 18 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (0...𝑀) ⊆ (-𝑗...𝑀)) |
20 | | fzssuz 12787 |
. . . . . . . 8
⊢ (-𝑗...𝑀) ⊆
(ℤ≥‘-𝑗) |
21 | 19, 20 | syl6ss 3896 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (0...𝑀) ⊆
(ℤ≥‘-𝑗)) |
22 | 21 | sselda 3884 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝑖 ∈ (ℤ≥‘-𝑗)) |
23 | 2 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝑗 ∈ (1...𝑁)) |
24 | | fzsum2sub.2 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘-𝑗) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ ℂ) |
25 | 8, 22, 23, 24 | syl3anc 1362 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝐴 ∈ ℂ) |
26 | | fzsum2sub.1 |
. . . . 5
⊢ (𝑖 = (𝑘 − 𝑗) → 𝐴 = 𝐵) |
27 | 3, 4, 7, 25, 26 | fsumshft 14956 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑖 ∈ (0...𝑀)𝐴 = Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵) |
28 | 5 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑀 ∈
ℕ0) |
29 | 9, 2 | sseldi 3882 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ) |
30 | 29 | nnnn0d 11792 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ0) |
31 | 28, 30 | nn0addcld 11796 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈
ℕ0) |
32 | 31 | nn0red 11793 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ ℝ) |
33 | 32 | ltp1d 11407 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) < ((𝑀 + 𝑗) + 1)) |
34 | | fzdisj 12773 |
. . . . . . . 8
⊢ ((𝑀 + 𝑗) < ((𝑀 + 𝑗) + 1) → ((𝑗...(𝑀 + 𝑗)) ∩ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) = ∅) |
35 | 33, 34 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((𝑗...(𝑀 + 𝑗)) ∩ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) = ∅) |
36 | | fzsum2sub.n |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
37 | 36 | nn0zd 11923 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℤ) |
38 | 6, 37 | zaddcld 11929 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 + 𝑁) ∈ ℤ) |
39 | 38 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ∈ ℤ) |
40 | 31 | nn0zd 11923 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ ℤ) |
41 | 29 | nnred 11490 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℝ) |
42 | | nn0addge2 11781 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ℝ ∧ 𝑀 ∈ ℕ0)
→ 𝑗 ≤ (𝑀 + 𝑗)) |
43 | 41, 28, 42 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ≤ (𝑀 + 𝑗)) |
44 | 36 | nn0red 11793 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℝ) |
45 | 44 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑁 ∈ ℝ) |
46 | 28 | nn0red 11793 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℝ) |
47 | | elfzle2 12750 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (1...𝑁) → 𝑗 ≤ 𝑁) |
48 | 47 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ≤ 𝑁) |
49 | 41, 45, 46, 48 | leadd2dd 11092 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ≤ (𝑀 + 𝑁)) |
50 | | elfz4 12740 |
. . . . . . . . 9
⊢ (((𝑗 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ (𝑀 + 𝑗) ∈ ℤ) ∧ (𝑗 ≤ (𝑀 + 𝑗) ∧ (𝑀 + 𝑗) ≤ (𝑀 + 𝑁))) → (𝑀 + 𝑗) ∈ (𝑗...(𝑀 + 𝑁))) |
51 | 3, 39, 40, 43, 49, 50 | syl32anc 1369 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ (𝑗...(𝑀 + 𝑁))) |
52 | | fzsplit 12772 |
. . . . . . . 8
⊢ ((𝑀 + 𝑗) ∈ (𝑗...(𝑀 + 𝑁)) → (𝑗...(𝑀 + 𝑁)) = ((𝑗...(𝑀 + 𝑗)) ∪ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)))) |
53 | 51, 52 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑁)) = ((𝑗...(𝑀 + 𝑗)) ∪ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)))) |
54 | | fzfid 13179 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑁)) ∈ Fin) |
55 | | simpll 763 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝜑) |
56 | 2 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑗 ∈ (1...𝑁)) |
57 | 11, 56 | sseldi 3882 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑗 ∈ ℕ0) |
58 | | fz2ssnn0 30168 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ0
→ (𝑗...(𝑀 + 𝑁)) ⊆
ℕ0) |
59 | 57, 58 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → (𝑗...(𝑀 + 𝑁)) ⊆
ℕ0) |
60 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) |
61 | 59, 60 | sseldd 3885 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑘 ∈ ℕ0) |
62 | 26 | eleq1d 2865 |
. . . . . . . . 9
⊢ (𝑖 = (𝑘 − 𝑗) → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
63 | | simpll 763 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (ℤ≥‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝜑) |
64 | | simplr 765 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (ℤ≥‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝑖 ∈ (ℤ≥‘-𝑗)) |
65 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (ℤ≥‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁)) |
66 | 63, 64, 65, 24 | syl3anc 1362 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (ℤ≥‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ ℂ) |
67 | 66 | an32s 648 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (ℤ≥‘-𝑗)) → 𝐴 ∈ ℂ) |
68 | 67 | ralrimiva 3147 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ∀𝑖 ∈ (ℤ≥‘-𝑗)𝐴 ∈ ℂ) |
69 | 68 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) →
∀𝑖 ∈
(ℤ≥‘-𝑗)𝐴 ∈ ℂ) |
70 | | nnsscn 11480 |
. . . . . . . . . . . . 13
⊢ ℕ
⊆ ℂ |
71 | 9, 70 | sstri 3893 |
. . . . . . . . . . . 12
⊢
(1...𝑁) ⊆
ℂ |
72 | | simplr 765 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ (1...𝑁)) |
73 | 71, 72 | sseldi 3882 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈
ℂ) |
74 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
75 | 74 | nn0cnd 11794 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℂ) |
76 | 73, 75 | negsubdi2d 10850 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → -(𝑗 − 𝑘) = (𝑘 − 𝑗)) |
77 | 1, 72 | sseldi 3882 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈
ℤ) |
78 | | eluzmn 12089 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ0)
→ 𝑗 ∈
(ℤ≥‘(𝑗 − 𝑘))) |
79 | 77, 74, 78 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈
(ℤ≥‘(𝑗 − 𝑘))) |
80 | | uzneg 12101 |
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘(𝑗 − 𝑘)) → -(𝑗 − 𝑘) ∈ (ℤ≥‘-𝑗)) |
81 | 79, 80 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → -(𝑗 − 𝑘) ∈ (ℤ≥‘-𝑗)) |
82 | 76, 81 | eqeltrrd 2882 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → (𝑘 − 𝑗) ∈ (ℤ≥‘-𝑗)) |
83 | 62, 69, 82 | rspcdva 3560 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈
ℂ) |
84 | 55, 56, 61, 83 | syl21anc 834 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝐵 ∈ ℂ) |
85 | 35, 53, 54, 84 | fsumsplit 14918 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵 = (Σ𝑘 ∈ (𝑗...(𝑀 + 𝑗))𝐵 + Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵)) |
86 | 3 | zcnd 11926 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℂ) |
87 | 86 | addid2d 10677 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (0 + 𝑗) = 𝑗) |
88 | 87 | oveq1d 7022 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((0 + 𝑗)...(𝑀 + 𝑗)) = (𝑗...(𝑀 + 𝑗))) |
89 | 88 | eqcomd 2799 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑗)) = ((0 + 𝑗)...(𝑀 + 𝑗))) |
90 | 89 | sumeq1d 14879 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑗))𝐵 = Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵) |
91 | | fzsum2sub.3 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) → 𝐵 = 0) |
92 | 91 | sumeq2dv 14881 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵 = Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0) |
93 | | fzfi 13178 |
. . . . . . . . 9
⊢ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ∈ Fin |
94 | | sumz 14900 |
. . . . . . . . . 10
⊢
(((((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ⊆ (ℤ≥‘0)
∨ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ∈ Fin) → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0 = 0) |
95 | 94 | olcs 871 |
. . . . . . . . 9
⊢ ((((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ∈ Fin → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0 = 0) |
96 | 93, 95 | ax-mp 5 |
. . . . . . . 8
⊢
Σ𝑘 ∈
(((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0 = 0 |
97 | 92, 96 | syl6eq 2845 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵 = 0) |
98 | 90, 97 | oveq12d 7025 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (Σ𝑘 ∈ (𝑗...(𝑀 + 𝑗))𝐵 + Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵) = (Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 + 0)) |
99 | | fzfid 13179 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((0 + 𝑗)...(𝑀 + 𝑗)) ∈ Fin) |
100 | | simpll 763 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝜑) |
101 | 2 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑗 ∈ (1...𝑁)) |
102 | | elfzuz3 12744 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1...𝑁) → 𝑁 ∈ (ℤ≥‘𝑗)) |
103 | 102 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑁 ∈ (ℤ≥‘𝑗)) |
104 | | eluzadd 12111 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘𝑗) ∧ 𝑀 ∈ ℤ) → (𝑁 + 𝑀) ∈
(ℤ≥‘(𝑗 + 𝑀))) |
105 | 103, 7, 104 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑁 + 𝑀) ∈
(ℤ≥‘(𝑗 + 𝑀))) |
106 | 36 | nn0cnd 11794 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℂ) |
107 | 106 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑁 ∈ ℂ) |
108 | | zsscn 11826 |
. . . . . . . . . . . . . . . 16
⊢ ℤ
⊆ ℂ |
109 | 108, 7 | sseldi 3882 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℂ) |
110 | 107, 109 | addcomd 10678 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑁 + 𝑀) = (𝑀 + 𝑁)) |
111 | 86, 109 | addcomd 10678 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑗 + 𝑀) = (𝑀 + 𝑗)) |
112 | 111 | fveq2d 6534 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) →
(ℤ≥‘(𝑗 + 𝑀)) = (ℤ≥‘(𝑀 + 𝑗))) |
113 | 105, 110,
112 | 3eltr3d 2895 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ∈
(ℤ≥‘(𝑀 + 𝑗))) |
114 | 113 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → (𝑀 + 𝑁) ∈
(ℤ≥‘(𝑀 + 𝑗))) |
115 | | fzss2 12786 |
. . . . . . . . . . . 12
⊢ ((𝑀 + 𝑁) ∈
(ℤ≥‘(𝑀 + 𝑗)) → (𝑗...(𝑀 + 𝑗)) ⊆ (𝑗...(𝑀 + 𝑁))) |
116 | 114, 115 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → (𝑗...(𝑀 + 𝑗)) ⊆ (𝑗...(𝑀 + 𝑁))) |
117 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) |
118 | 88 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → ((0 + 𝑗)...(𝑀 + 𝑗)) = (𝑗...(𝑀 + 𝑗))) |
119 | 117, 118 | eleqtrd 2883 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ (𝑗...(𝑀 + 𝑗))) |
120 | 116, 119 | sseldd 3885 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) |
121 | 100, 101,
120, 61 | syl21anc 834 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ ℕ0) |
122 | 100, 101,
121, 83 | syl21anc 834 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝐵 ∈ ℂ) |
123 | 99, 122 | fsumcl 14911 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 ∈ ℂ) |
124 | 123 | addid1d 10676 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 + 0) = Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵) |
125 | 85, 98, 124 | 3eqtrrd 2834 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 = Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵) |
126 | | fzval3 12944 |
. . . . . . . . . 10
⊢ ((𝑀 + 𝑁) ∈ ℤ → (𝑗...(𝑀 + 𝑁)) = (𝑗..^((𝑀 + 𝑁) + 1))) |
127 | 39, 126 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑁)) = (𝑗..^((𝑀 + 𝑁) + 1))) |
128 | 127 | ineq2d 4104 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((0..^𝑗) ∩ (𝑗...(𝑀 + 𝑁))) = ((0..^𝑗) ∩ (𝑗..^((𝑀 + 𝑁) + 1)))) |
129 | | fzodisj 12909 |
. . . . . . . 8
⊢
((0..^𝑗) ∩
(𝑗..^((𝑀 + 𝑁) + 1))) = ∅ |
130 | 128, 129 | syl6eq 2845 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((0..^𝑗) ∩ (𝑗...(𝑀 + 𝑁))) = ∅) |
131 | 39 | peano2zd 11928 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((𝑀 + 𝑁) + 1) ∈ ℤ) |
132 | 30 | nn0ge0d 11795 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 0 ≤ 𝑗) |
133 | 131 | zred 11925 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((𝑀 + 𝑁) + 1) ∈ ℝ) |
134 | 39 | zred 11925 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ∈ ℝ) |
135 | | nn0addge2 11781 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℕ0)
→ 𝑁 ≤ (𝑀 + 𝑁)) |
136 | 44, 5, 135 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ≤ (𝑀 + 𝑁)) |
137 | 136 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑁 ≤ (𝑀 + 𝑁)) |
138 | 134 | lep1d 11408 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ≤ ((𝑀 + 𝑁) + 1)) |
139 | 45, 134, 133, 137, 138 | letrd 10633 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑁 ≤ ((𝑀 + 𝑁) + 1)) |
140 | 41, 45, 133, 48, 139 | letrd 10633 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ≤ ((𝑀 + 𝑁) + 1)) |
141 | | elfz4 12740 |
. . . . . . . . . 10
⊢ (((0
∈ ℤ ∧ ((𝑀 +
𝑁) + 1) ∈ ℤ
∧ 𝑗 ∈ ℤ)
∧ (0 ≤ 𝑗 ∧ 𝑗 ≤ ((𝑀 + 𝑁) + 1))) → 𝑗 ∈ (0...((𝑀 + 𝑁) + 1))) |
142 | 4, 131, 3, 132, 140, 141 | syl32anc 1369 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (0...((𝑀 + 𝑁) + 1))) |
143 | | fzosplit 12908 |
. . . . . . . . 9
⊢ (𝑗 ∈ (0...((𝑀 + 𝑁) + 1)) → (0..^((𝑀 + 𝑁) + 1)) = ((0..^𝑗) ∪ (𝑗..^((𝑀 + 𝑁) + 1)))) |
144 | 142, 143 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (0..^((𝑀 + 𝑁) + 1)) = ((0..^𝑗) ∪ (𝑗..^((𝑀 + 𝑁) + 1)))) |
145 | | fzval3 12944 |
. . . . . . . . 9
⊢ ((𝑀 + 𝑁) ∈ ℤ → (0...(𝑀 + 𝑁)) = (0..^((𝑀 + 𝑁) + 1))) |
146 | 39, 145 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (0...(𝑀 + 𝑁)) = (0..^((𝑀 + 𝑁) + 1))) |
147 | 127 | uneq2d 4055 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((0..^𝑗) ∪ (𝑗...(𝑀 + 𝑁))) = ((0..^𝑗) ∪ (𝑗..^((𝑀 + 𝑁) + 1)))) |
148 | 144, 146,
147 | 3eqtr4d 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (0...(𝑀 + 𝑁)) = ((0..^𝑗) ∪ (𝑗...(𝑀 + 𝑁)))) |
149 | | fzfid 13179 |
. . . . . . . 8
⊢ (𝜑 → (0...(𝑀 + 𝑁)) ∈ Fin) |
150 | 149 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (0...(𝑀 + 𝑁)) ∈ Fin) |
151 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝜑) |
152 | 2 | adantrl 712 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝑗 ∈ (1...𝑁)) |
153 | | fz0ssnn0 12841 |
. . . . . . . . . 10
⊢
(0...(𝑀 + 𝑁)) ⊆
ℕ0 |
154 | | simprl 767 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝑘 ∈ (0...(𝑀 + 𝑁))) |
155 | 153, 154 | sseldi 3882 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝑘 ∈ ℕ0) |
156 | 151, 152,
155, 83 | syl21anc 834 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝐵 ∈ ℂ) |
157 | 156 | anass1rs 651 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...(𝑀 + 𝑁))) → 𝐵 ∈ ℂ) |
158 | 130, 148,
150, 157 | fsumsplit 14918 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵 = (Σ𝑘 ∈ (0..^𝑗)𝐵 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵)) |
159 | | fzsum2sub.4 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0..^𝑗)) → 𝐵 = 0) |
160 | 159 | sumeq2dv 14881 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (0..^𝑗)𝐵 = Σ𝑘 ∈ (0..^𝑗)0) |
161 | | fzofi 13180 |
. . . . . . . . 9
⊢
(0..^𝑗) ∈
Fin |
162 | | sumz 14900 |
. . . . . . . . . 10
⊢
(((0..^𝑗) ⊆
(ℤ≥‘0) ∨ (0..^𝑗) ∈ Fin) → Σ𝑘 ∈ (0..^𝑗)0 = 0) |
163 | 162 | olcs 871 |
. . . . . . . . 9
⊢
((0..^𝑗) ∈ Fin
→ Σ𝑘 ∈
(0..^𝑗)0 =
0) |
164 | 161, 163 | ax-mp 5 |
. . . . . . . 8
⊢
Σ𝑘 ∈
(0..^𝑗)0 =
0 |
165 | 160, 164 | syl6eq 2845 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (0..^𝑗)𝐵 = 0) |
166 | 165 | oveq1d 7022 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (Σ𝑘 ∈ (0..^𝑗)𝐵 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵) = (0 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵)) |
167 | 54, 84 | fsumcl 14911 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵 ∈ ℂ) |
168 | 167 | addid2d 10677 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (0 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵) = Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵) |
169 | 158, 166,
168 | 3eqtrrd 2834 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵) |
170 | 125, 169 | eqtrd 2829 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵) |
171 | 27, 170 | eqtrd 2829 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → Σ𝑖 ∈ (0...𝑀)𝐴 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵) |
172 | 171 | sumeq2dv 14881 |
. 2
⊢ (𝜑 → Σ𝑗 ∈ (1...𝑁)Σ𝑖 ∈ (0...𝑀)𝐴 = Σ𝑗 ∈ (1...𝑁)Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵) |
173 | | fzfid 13179 |
. . 3
⊢ (𝜑 → (0...𝑀) ∈ Fin) |
174 | | fzfid 13179 |
. . 3
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
175 | 25 | anasss 467 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ (1...𝑁) ∧ 𝑖 ∈ (0...𝑀))) → 𝐴 ∈ ℂ) |
176 | 175 | ancom2s 646 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (1...𝑁))) → 𝐴 ∈ ℂ) |
177 | 173, 174,
176 | fsumcom 14951 |
. 2
⊢ (𝜑 → Σ𝑖 ∈ (0...𝑀)Σ𝑗 ∈ (1...𝑁)𝐴 = Σ𝑗 ∈ (1...𝑁)Σ𝑖 ∈ (0...𝑀)𝐴) |
178 | 149, 174,
156 | fsumcom 14951 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑗 ∈ (1...𝑁)𝐵 = Σ𝑗 ∈ (1...𝑁)Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵) |
179 | 172, 177,
178 | 3eqtr4d 2839 |
1
⊢ (𝜑 → Σ𝑖 ∈ (0...𝑀)Σ𝑗 ∈ (1...𝑁)𝐴 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑗 ∈ (1...𝑁)𝐵) |