Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsum2dsub Structured version   Visualization version   GIF version

Theorem fsum2dsub 34584
Description: Lemma for breprexp 34610- Re-index a double sum, using difference of the initial indices. (Contributed by Thierry Arnoux, 7-Dec-2021.)
Hypotheses
Ref Expression
fzsum2sub.m (𝜑𝑀 ∈ ℕ0)
fzsum2sub.n (𝜑𝑁 ∈ ℕ0)
fzsum2sub.1 (𝑖 = (𝑘𝑗) → 𝐴 = 𝐵)
fzsum2sub.2 ((𝜑𝑖 ∈ (ℤ‘-𝑗) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ ℂ)
fzsum2sub.3 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) → 𝐵 = 0)
fzsum2sub.4 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0..^𝑗)) → 𝐵 = 0)
Assertion
Ref Expression
fsum2dsub (𝜑 → Σ𝑖 ∈ (0...𝑀𝑗 ∈ (1...𝑁)𝐴 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑗 ∈ (1...𝑁)𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑖   𝑖,𝑀,𝑗,𝑘   𝑖,𝑁,𝑗,𝑘   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑗,𝑘)

Proof of Theorem fsum2dsub
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
21elfzelzd 13585 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℤ)
3 0zd 12651 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → 0 ∈ ℤ)
4 fzsum2sub.m . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
54nn0zd 12665 . . . . . 6 (𝜑𝑀 ∈ ℤ)
65adantr 480 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℤ)
7 simpll 766 . . . . . 6 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝜑)
8 fz1ssnn 13615 . . . . . . . . . . . 12 (1...𝑁) ⊆ ℕ
9 nnssnn0 12556 . . . . . . . . . . . 12 ℕ ⊆ ℕ0
108, 9sstri 4018 . . . . . . . . . . 11 (1...𝑁) ⊆ ℕ0
1110, 1sselid 4006 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ0)
12 nn0uz 12945 . . . . . . . . . 10 0 = (ℤ‘0)
1311, 12eleqtrdi 2854 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (ℤ‘0))
14 neg0 11582 . . . . . . . . . 10 -0 = 0
15 uzneg 12923 . . . . . . . . . 10 (𝑗 ∈ (ℤ‘0) → -0 ∈ (ℤ‘-𝑗))
1614, 15eqeltrrid 2849 . . . . . . . . 9 (𝑗 ∈ (ℤ‘0) → 0 ∈ (ℤ‘-𝑗))
17 fzss1 13623 . . . . . . . . 9 (0 ∈ (ℤ‘-𝑗) → (0...𝑀) ⊆ (-𝑗...𝑀))
1813, 16, 173syl 18 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (0...𝑀) ⊆ (-𝑗...𝑀))
19 fzssuz 13625 . . . . . . . 8 (-𝑗...𝑀) ⊆ (ℤ‘-𝑗)
2018, 19sstrdi 4021 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (0...𝑀) ⊆ (ℤ‘-𝑗))
2120sselda 4008 . . . . . 6 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝑖 ∈ (ℤ‘-𝑗))
221adantr 480 . . . . . 6 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝑗 ∈ (1...𝑁))
23 fzsum2sub.2 . . . . . 6 ((𝜑𝑖 ∈ (ℤ‘-𝑗) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ ℂ)
247, 21, 22, 23syl3anc 1371 . . . . 5 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝐴 ∈ ℂ)
25 fzsum2sub.1 . . . . 5 (𝑖 = (𝑘𝑗) → 𝐴 = 𝐵)
262, 3, 6, 24, 25fsumshft 15828 . . . 4 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑖 ∈ (0...𝑀)𝐴 = Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵)
274adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℕ0)
288, 1sselid 4006 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ)
2928nnnn0d 12613 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ0)
3027, 29nn0addcld 12617 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ ℕ0)
3130nn0red 12614 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ ℝ)
3231ltp1d 12225 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) < ((𝑀 + 𝑗) + 1))
33 fzdisj 13611 . . . . . . . 8 ((𝑀 + 𝑗) < ((𝑀 + 𝑗) + 1) → ((𝑗...(𝑀 + 𝑗)) ∩ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) = ∅)
3432, 33syl 17 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝑗...(𝑀 + 𝑗)) ∩ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) = ∅)
35 fzsum2sub.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
3635nn0zd 12665 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
375, 36zaddcld 12751 . . . . . . . . . 10 (𝜑 → (𝑀 + 𝑁) ∈ ℤ)
3837adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ∈ ℤ)
3930nn0zd 12665 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ ℤ)
4028nnred 12308 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℝ)
41 nn0addge2 12600 . . . . . . . . . 10 ((𝑗 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → 𝑗 ≤ (𝑀 + 𝑗))
4240, 27, 41syl2anc 583 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ≤ (𝑀 + 𝑗))
4335nn0red 12614 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ∈ ℝ)
4527nn0red 12614 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℝ)
46 elfzle2 13588 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑁) → 𝑗𝑁)
4746adantl 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗𝑁)
4840, 44, 45, 47leadd2dd 11905 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ≤ (𝑀 + 𝑁))
492, 38, 39, 42, 48elfzd 13575 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ (𝑗...(𝑀 + 𝑁)))
50 fzsplit 13610 . . . . . . . 8 ((𝑀 + 𝑗) ∈ (𝑗...(𝑀 + 𝑁)) → (𝑗...(𝑀 + 𝑁)) = ((𝑗...(𝑀 + 𝑗)) ∪ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))))
5149, 50syl 17 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑁)) = ((𝑗...(𝑀 + 𝑗)) ∪ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))))
52 fzfid 14024 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑁)) ∈ Fin)
53 simpll 766 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝜑)
541adantr 480 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑗 ∈ (1...𝑁))
5510, 54sselid 4006 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑗 ∈ ℕ0)
56 fz2ssnn0 32790 . . . . . . . . . 10 (𝑗 ∈ ℕ0 → (𝑗...(𝑀 + 𝑁)) ⊆ ℕ0)
5755, 56syl 17 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → (𝑗...(𝑀 + 𝑁)) ⊆ ℕ0)
58 simpr 484 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑘 ∈ (𝑗...(𝑀 + 𝑁)))
5957, 58sseldd 4009 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑘 ∈ ℕ0)
6025eleq1d 2829 . . . . . . . . 9 (𝑖 = (𝑘𝑗) → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
61 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (ℤ‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝜑)
62 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (ℤ‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝑖 ∈ (ℤ‘-𝑗))
63 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (ℤ‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
6461, 62, 63, 23syl3anc 1371 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (ℤ‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ ℂ)
6564an32s 651 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (ℤ‘-𝑗)) → 𝐴 ∈ ℂ)
6665ralrimiva 3152 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → ∀𝑖 ∈ (ℤ‘-𝑗)𝐴 ∈ ℂ)
6766adantr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → ∀𝑖 ∈ (ℤ‘-𝑗)𝐴 ∈ ℂ)
68 nnsscn 12298 . . . . . . . . . . . . 13 ℕ ⊆ ℂ
698, 68sstri 4018 . . . . . . . . . . . 12 (1...𝑁) ⊆ ℂ
70 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ (1...𝑁))
7169, 70sselid 4006 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ ℂ)
72 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
7372nn0cnd 12615 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
7471, 73negsubdi2d 11663 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → -(𝑗𝑘) = (𝑘𝑗))
7570elfzelzd 13585 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ ℤ)
76 eluzmn 12910 . . . . . . . . . . . 12 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ (ℤ‘(𝑗𝑘)))
7775, 72, 76syl2anc 583 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ (ℤ‘(𝑗𝑘)))
78 uzneg 12923 . . . . . . . . . . 11 (𝑗 ∈ (ℤ‘(𝑗𝑘)) → -(𝑗𝑘) ∈ (ℤ‘-𝑗))
7977, 78syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → -(𝑗𝑘) ∈ (ℤ‘-𝑗))
8074, 79eqeltrrd 2845 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → (𝑘𝑗) ∈ (ℤ‘-𝑗))
8160, 67, 80rspcdva 3636 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
8253, 54, 59, 81syl21anc 837 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝐵 ∈ ℂ)
8334, 51, 52, 82fsumsplit 15789 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵 = (Σ𝑘 ∈ (𝑗...(𝑀 + 𝑗))𝐵 + Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵))
842zcnd 12748 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℂ)
8584addlidd 11491 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → (0 + 𝑗) = 𝑗)
8685oveq1d 7463 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → ((0 + 𝑗)...(𝑀 + 𝑗)) = (𝑗...(𝑀 + 𝑗)))
8786eqcomd 2746 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑗)) = ((0 + 𝑗)...(𝑀 + 𝑗)))
8887sumeq1d 15748 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑗))𝐵 = Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵)
89 fzsum2sub.3 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) → 𝐵 = 0)
9089sumeq2dv 15750 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵 = Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0)
91 fzfi 14023 . . . . . . . . 9 (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ∈ Fin
92 sumz 15770 . . . . . . . . . 10 (((((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ⊆ (ℤ‘0) ∨ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ∈ Fin) → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0 = 0)
9392olcs 875 . . . . . . . . 9 ((((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ∈ Fin → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0 = 0)
9491, 93ax-mp 5 . . . . . . . 8 Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0 = 0
9590, 94eqtrdi 2796 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵 = 0)
9688, 95oveq12d 7466 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (Σ𝑘 ∈ (𝑗...(𝑀 + 𝑗))𝐵 + Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵) = (Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 + 0))
97 fzfid 14024 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → ((0 + 𝑗)...(𝑀 + 𝑗)) ∈ Fin)
98 simpll 766 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝜑)
991adantr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑗 ∈ (1...𝑁))
100 elfzuz3 13581 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑁) → 𝑁 ∈ (ℤ𝑗))
101100adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ∈ (ℤ𝑗))
102 eluzadd 12932 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ𝑗) ∧ 𝑀 ∈ ℤ) → (𝑁 + 𝑀) ∈ (ℤ‘(𝑗 + 𝑀)))
103101, 6, 102syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑁 + 𝑀) ∈ (ℤ‘(𝑗 + 𝑀)))
10435nn0cnd 12615 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℂ)
105104adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ∈ ℂ)
106 zsscn 12647 . . . . . . . . . . . . . . . 16 ℤ ⊆ ℂ
107106, 6sselid 4006 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℂ)
108105, 107addcomd 11492 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑁 + 𝑀) = (𝑀 + 𝑁))
10984, 107addcomd 11492 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗 + 𝑀) = (𝑀 + 𝑗))
110109fveq2d 6924 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑁)) → (ℤ‘(𝑗 + 𝑀)) = (ℤ‘(𝑀 + 𝑗)))
111103, 108, 1103eltr3d 2858 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑗)))
112111adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → (𝑀 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑗)))
113 fzss2 13624 . . . . . . . . . . . 12 ((𝑀 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑗)) → (𝑗...(𝑀 + 𝑗)) ⊆ (𝑗...(𝑀 + 𝑁)))
114112, 113syl 17 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → (𝑗...(𝑀 + 𝑗)) ⊆ (𝑗...(𝑀 + 𝑁)))
115 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗)))
11686adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → ((0 + 𝑗)...(𝑀 + 𝑗)) = (𝑗...(𝑀 + 𝑗)))
117115, 116eleqtrd 2846 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ (𝑗...(𝑀 + 𝑗)))
118114, 117sseldd 4009 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ (𝑗...(𝑀 + 𝑁)))
11998, 99, 118, 59syl21anc 837 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ ℕ0)
12098, 99, 119, 81syl21anc 837 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝐵 ∈ ℂ)
12197, 120fsumcl 15781 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 ∈ ℂ)
122121addridd 11490 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 + 0) = Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵)
12383, 96, 1223eqtrrd 2785 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 = Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵)
124 fzval3 13785 . . . . . . . . . 10 ((𝑀 + 𝑁) ∈ ℤ → (𝑗...(𝑀 + 𝑁)) = (𝑗..^((𝑀 + 𝑁) + 1)))
12538, 124syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑁)) = (𝑗..^((𝑀 + 𝑁) + 1)))
126125ineq2d 4241 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → ((0..^𝑗) ∩ (𝑗...(𝑀 + 𝑁))) = ((0..^𝑗) ∩ (𝑗..^((𝑀 + 𝑁) + 1))))
127 fzodisj 13750 . . . . . . . 8 ((0..^𝑗) ∩ (𝑗..^((𝑀 + 𝑁) + 1))) = ∅
128126, 127eqtrdi 2796 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → ((0..^𝑗) ∩ (𝑗...(𝑀 + 𝑁))) = ∅)
12938peano2zd 12750 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝑀 + 𝑁) + 1) ∈ ℤ)
13029nn0ge0d 12616 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 0 ≤ 𝑗)
131129zred 12747 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝑀 + 𝑁) + 1) ∈ ℝ)
13238zred 12747 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ∈ ℝ)
133 nn0addge2 12600 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → 𝑁 ≤ (𝑀 + 𝑁))
13443, 4, 133syl2anc 583 . . . . . . . . . . . . 13 (𝜑𝑁 ≤ (𝑀 + 𝑁))
135134adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ≤ (𝑀 + 𝑁))
136132lep1d 12226 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ≤ ((𝑀 + 𝑁) + 1))
13744, 132, 131, 135, 136letrd 11447 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ≤ ((𝑀 + 𝑁) + 1))
13840, 44, 131, 47, 137letrd 11447 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ≤ ((𝑀 + 𝑁) + 1))
1393, 129, 2, 130, 138elfzd 13575 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (0...((𝑀 + 𝑁) + 1)))
140 fzosplit 13749 . . . . . . . . 9 (𝑗 ∈ (0...((𝑀 + 𝑁) + 1)) → (0..^((𝑀 + 𝑁) + 1)) = ((0..^𝑗) ∪ (𝑗..^((𝑀 + 𝑁) + 1))))
141139, 140syl 17 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (0..^((𝑀 + 𝑁) + 1)) = ((0..^𝑗) ∪ (𝑗..^((𝑀 + 𝑁) + 1))))
142 fzval3 13785 . . . . . . . . 9 ((𝑀 + 𝑁) ∈ ℤ → (0...(𝑀 + 𝑁)) = (0..^((𝑀 + 𝑁) + 1)))
14338, 142syl 17 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (0...(𝑀 + 𝑁)) = (0..^((𝑀 + 𝑁) + 1)))
144125uneq2d 4191 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → ((0..^𝑗) ∪ (𝑗...(𝑀 + 𝑁))) = ((0..^𝑗) ∪ (𝑗..^((𝑀 + 𝑁) + 1))))
145141, 143, 1443eqtr4d 2790 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (0...(𝑀 + 𝑁)) = ((0..^𝑗) ∪ (𝑗...(𝑀 + 𝑁))))
146 fzfid 14024 . . . . . . . 8 (𝜑 → (0...(𝑀 + 𝑁)) ∈ Fin)
147146adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (0...(𝑀 + 𝑁)) ∈ Fin)
148 simpl 482 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝜑)
1491adantrl 715 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝑗 ∈ (1...𝑁))
150 fz0ssnn0 13679 . . . . . . . . . 10 (0...(𝑀 + 𝑁)) ⊆ ℕ0
151 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
152150, 151sselid 4006 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝑘 ∈ ℕ0)
153148, 149, 152, 81syl21anc 837 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝐵 ∈ ℂ)
154153anass1rs 654 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...(𝑀 + 𝑁))) → 𝐵 ∈ ℂ)
155128, 145, 147, 154fsumsplit 15789 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵 = (Σ𝑘 ∈ (0..^𝑗)𝐵 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵))
156 fzsum2sub.4 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0..^𝑗)) → 𝐵 = 0)
157156sumeq2dv 15750 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (0..^𝑗)𝐵 = Σ𝑘 ∈ (0..^𝑗)0)
158 fzofi 14025 . . . . . . . . 9 (0..^𝑗) ∈ Fin
159 sumz 15770 . . . . . . . . . 10 (((0..^𝑗) ⊆ (ℤ‘0) ∨ (0..^𝑗) ∈ Fin) → Σ𝑘 ∈ (0..^𝑗)0 = 0)
160159olcs 875 . . . . . . . . 9 ((0..^𝑗) ∈ Fin → Σ𝑘 ∈ (0..^𝑗)0 = 0)
161158, 160ax-mp 5 . . . . . . . 8 Σ𝑘 ∈ (0..^𝑗)0 = 0
162157, 161eqtrdi 2796 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (0..^𝑗)𝐵 = 0)
163162oveq1d 7463 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (Σ𝑘 ∈ (0..^𝑗)𝐵 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵) = (0 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵))
16452, 82fsumcl 15781 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵 ∈ ℂ)
165164addlidd 11491 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (0 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵) = Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵)
166155, 163, 1653eqtrrd 2785 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
167123, 166eqtrd 2780 . . . 4 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
16826, 167eqtrd 2780 . . 3 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑖 ∈ (0...𝑀)𝐴 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
169168sumeq2dv 15750 . 2 (𝜑 → Σ𝑗 ∈ (1...𝑁𝑖 ∈ (0...𝑀)𝐴 = Σ𝑗 ∈ (1...𝑁𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
170 fzfid 14024 . . 3 (𝜑 → (0...𝑀) ∈ Fin)
171 fzfid 14024 . . 3 (𝜑 → (1...𝑁) ∈ Fin)
17224anasss 466 . . . 4 ((𝜑 ∧ (𝑗 ∈ (1...𝑁) ∧ 𝑖 ∈ (0...𝑀))) → 𝐴 ∈ ℂ)
173172ancom2s 649 . . 3 ((𝜑 ∧ (𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (1...𝑁))) → 𝐴 ∈ ℂ)
174170, 171, 173fsumcom 15823 . 2 (𝜑 → Σ𝑖 ∈ (0...𝑀𝑗 ∈ (1...𝑁)𝐴 = Σ𝑗 ∈ (1...𝑁𝑖 ∈ (0...𝑀)𝐴)
175146, 171, 153fsumcom 15823 . 2 (𝜑 → Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑗 ∈ (1...𝑁)𝐵 = Σ𝑗 ∈ (1...𝑁𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
176169, 174, 1753eqtr4d 2790 1 (𝜑 → Σ𝑖 ∈ (0...𝑀𝑗 ∈ (1...𝑁)𝐴 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑗 ∈ (1...𝑁)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cun 3974  cin 3975  wss 3976  c0 4352   class class class wbr 5166  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  -cneg 11521  cn 12293  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567  ..^cfzo 13711  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735
This theorem is referenced by:  breprexplemc  34609
  Copyright terms: Public domain W3C validator