Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsum2dsub Structured version   Visualization version   GIF version

Theorem fsum2dsub 34620
Description: Lemma for breprexp 34646- Re-index a double sum, using difference of the initial indices. (Contributed by Thierry Arnoux, 7-Dec-2021.)
Hypotheses
Ref Expression
fzsum2sub.m (𝜑𝑀 ∈ ℕ0)
fzsum2sub.n (𝜑𝑁 ∈ ℕ0)
fzsum2sub.1 (𝑖 = (𝑘𝑗) → 𝐴 = 𝐵)
fzsum2sub.2 ((𝜑𝑖 ∈ (ℤ‘-𝑗) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ ℂ)
fzsum2sub.3 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) → 𝐵 = 0)
fzsum2sub.4 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0..^𝑗)) → 𝐵 = 0)
Assertion
Ref Expression
fsum2dsub (𝜑 → Σ𝑖 ∈ (0...𝑀𝑗 ∈ (1...𝑁)𝐴 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑗 ∈ (1...𝑁)𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑖   𝑖,𝑀,𝑗,𝑘   𝑖,𝑁,𝑗,𝑘   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑗,𝑘)

Proof of Theorem fsum2dsub
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
21elfzelzd 13425 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℤ)
3 0zd 12480 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → 0 ∈ ℤ)
4 fzsum2sub.m . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
54nn0zd 12494 . . . . . 6 (𝜑𝑀 ∈ ℤ)
65adantr 480 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℤ)
7 simpll 766 . . . . . 6 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝜑)
8 fz1ssnn 13455 . . . . . . . . . . . 12 (1...𝑁) ⊆ ℕ
9 nnssnn0 12384 . . . . . . . . . . . 12 ℕ ⊆ ℕ0
108, 9sstri 3939 . . . . . . . . . . 11 (1...𝑁) ⊆ ℕ0
1110, 1sselid 3927 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ0)
12 nn0uz 12774 . . . . . . . . . 10 0 = (ℤ‘0)
1311, 12eleqtrdi 2841 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (ℤ‘0))
14 neg0 11407 . . . . . . . . . 10 -0 = 0
15 uzneg 12752 . . . . . . . . . 10 (𝑗 ∈ (ℤ‘0) → -0 ∈ (ℤ‘-𝑗))
1614, 15eqeltrrid 2836 . . . . . . . . 9 (𝑗 ∈ (ℤ‘0) → 0 ∈ (ℤ‘-𝑗))
17 fzss1 13463 . . . . . . . . 9 (0 ∈ (ℤ‘-𝑗) → (0...𝑀) ⊆ (-𝑗...𝑀))
1813, 16, 173syl 18 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (0...𝑀) ⊆ (-𝑗...𝑀))
19 fzssuz 13465 . . . . . . . 8 (-𝑗...𝑀) ⊆ (ℤ‘-𝑗)
2018, 19sstrdi 3942 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (0...𝑀) ⊆ (ℤ‘-𝑗))
2120sselda 3929 . . . . . 6 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝑖 ∈ (ℤ‘-𝑗))
221adantr 480 . . . . . 6 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝑗 ∈ (1...𝑁))
23 fzsum2sub.2 . . . . . 6 ((𝜑𝑖 ∈ (ℤ‘-𝑗) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ ℂ)
247, 21, 22, 23syl3anc 1373 . . . . 5 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝐴 ∈ ℂ)
25 fzsum2sub.1 . . . . 5 (𝑖 = (𝑘𝑗) → 𝐴 = 𝐵)
262, 3, 6, 24, 25fsumshft 15687 . . . 4 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑖 ∈ (0...𝑀)𝐴 = Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵)
274adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℕ0)
288, 1sselid 3927 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ)
2928nnnn0d 12442 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ0)
3027, 29nn0addcld 12446 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ ℕ0)
3130nn0red 12443 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ ℝ)
3231ltp1d 12052 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) < ((𝑀 + 𝑗) + 1))
33 fzdisj 13451 . . . . . . . 8 ((𝑀 + 𝑗) < ((𝑀 + 𝑗) + 1) → ((𝑗...(𝑀 + 𝑗)) ∩ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) = ∅)
3432, 33syl 17 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝑗...(𝑀 + 𝑗)) ∩ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) = ∅)
35 fzsum2sub.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
3635nn0zd 12494 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
375, 36zaddcld 12581 . . . . . . . . . 10 (𝜑 → (𝑀 + 𝑁) ∈ ℤ)
3837adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ∈ ℤ)
3930nn0zd 12494 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ ℤ)
4028nnred 12140 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℝ)
41 nn0addge2 12428 . . . . . . . . . 10 ((𝑗 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → 𝑗 ≤ (𝑀 + 𝑗))
4240, 27, 41syl2anc 584 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ≤ (𝑀 + 𝑗))
4335nn0red 12443 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ∈ ℝ)
4527nn0red 12443 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℝ)
46 elfzle2 13428 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑁) → 𝑗𝑁)
4746adantl 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗𝑁)
4840, 44, 45, 47leadd2dd 11732 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ≤ (𝑀 + 𝑁))
492, 38, 39, 42, 48elfzd 13415 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ (𝑗...(𝑀 + 𝑁)))
50 fzsplit 13450 . . . . . . . 8 ((𝑀 + 𝑗) ∈ (𝑗...(𝑀 + 𝑁)) → (𝑗...(𝑀 + 𝑁)) = ((𝑗...(𝑀 + 𝑗)) ∪ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))))
5149, 50syl 17 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑁)) = ((𝑗...(𝑀 + 𝑗)) ∪ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))))
52 fzfid 13880 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑁)) ∈ Fin)
53 simpll 766 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝜑)
541adantr 480 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑗 ∈ (1...𝑁))
5510, 54sselid 3927 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑗 ∈ ℕ0)
56 fz2ssnn0 32768 . . . . . . . . . 10 (𝑗 ∈ ℕ0 → (𝑗...(𝑀 + 𝑁)) ⊆ ℕ0)
5755, 56syl 17 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → (𝑗...(𝑀 + 𝑁)) ⊆ ℕ0)
58 simpr 484 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑘 ∈ (𝑗...(𝑀 + 𝑁)))
5957, 58sseldd 3930 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑘 ∈ ℕ0)
6025eleq1d 2816 . . . . . . . . 9 (𝑖 = (𝑘𝑗) → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
61 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (ℤ‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝜑)
62 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (ℤ‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝑖 ∈ (ℤ‘-𝑗))
63 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (ℤ‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
6461, 62, 63, 23syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (ℤ‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ ℂ)
6564an32s 652 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (ℤ‘-𝑗)) → 𝐴 ∈ ℂ)
6665ralrimiva 3124 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → ∀𝑖 ∈ (ℤ‘-𝑗)𝐴 ∈ ℂ)
6766adantr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → ∀𝑖 ∈ (ℤ‘-𝑗)𝐴 ∈ ℂ)
68 nnsscn 12130 . . . . . . . . . . . . 13 ℕ ⊆ ℂ
698, 68sstri 3939 . . . . . . . . . . . 12 (1...𝑁) ⊆ ℂ
70 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ (1...𝑁))
7169, 70sselid 3927 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ ℂ)
72 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
7372nn0cnd 12444 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
7471, 73negsubdi2d 11488 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → -(𝑗𝑘) = (𝑘𝑗))
7570elfzelzd 13425 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ ℤ)
76 eluzmn 12739 . . . . . . . . . . . 12 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ (ℤ‘(𝑗𝑘)))
7775, 72, 76syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ (ℤ‘(𝑗𝑘)))
78 uzneg 12752 . . . . . . . . . . 11 (𝑗 ∈ (ℤ‘(𝑗𝑘)) → -(𝑗𝑘) ∈ (ℤ‘-𝑗))
7977, 78syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → -(𝑗𝑘) ∈ (ℤ‘-𝑗))
8074, 79eqeltrrd 2832 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → (𝑘𝑗) ∈ (ℤ‘-𝑗))
8160, 67, 80rspcdva 3573 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
8253, 54, 59, 81syl21anc 837 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝐵 ∈ ℂ)
8334, 51, 52, 82fsumsplit 15648 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵 = (Σ𝑘 ∈ (𝑗...(𝑀 + 𝑗))𝐵 + Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵))
842zcnd 12578 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℂ)
8584addlidd 11314 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → (0 + 𝑗) = 𝑗)
8685oveq1d 7361 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → ((0 + 𝑗)...(𝑀 + 𝑗)) = (𝑗...(𝑀 + 𝑗)))
8786eqcomd 2737 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑗)) = ((0 + 𝑗)...(𝑀 + 𝑗)))
8887sumeq1d 15607 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑗))𝐵 = Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵)
89 fzsum2sub.3 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) → 𝐵 = 0)
9089sumeq2dv 15609 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵 = Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0)
91 fzfi 13879 . . . . . . . . 9 (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ∈ Fin
92 sumz 15629 . . . . . . . . . 10 (((((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ⊆ (ℤ‘0) ∨ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ∈ Fin) → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0 = 0)
9392olcs 876 . . . . . . . . 9 ((((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ∈ Fin → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0 = 0)
9491, 93ax-mp 5 . . . . . . . 8 Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0 = 0
9590, 94eqtrdi 2782 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵 = 0)
9688, 95oveq12d 7364 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (Σ𝑘 ∈ (𝑗...(𝑀 + 𝑗))𝐵 + Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵) = (Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 + 0))
97 fzfid 13880 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → ((0 + 𝑗)...(𝑀 + 𝑗)) ∈ Fin)
98 simpll 766 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝜑)
991adantr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑗 ∈ (1...𝑁))
100 elfzuz3 13421 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑁) → 𝑁 ∈ (ℤ𝑗))
101100adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ∈ (ℤ𝑗))
102 eluzadd 12761 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ𝑗) ∧ 𝑀 ∈ ℤ) → (𝑁 + 𝑀) ∈ (ℤ‘(𝑗 + 𝑀)))
103101, 6, 102syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑁 + 𝑀) ∈ (ℤ‘(𝑗 + 𝑀)))
10435nn0cnd 12444 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℂ)
105104adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ∈ ℂ)
106 zsscn 12476 . . . . . . . . . . . . . . . 16 ℤ ⊆ ℂ
107106, 6sselid 3927 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℂ)
108105, 107addcomd 11315 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑁 + 𝑀) = (𝑀 + 𝑁))
10984, 107addcomd 11315 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗 + 𝑀) = (𝑀 + 𝑗))
110109fveq2d 6826 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑁)) → (ℤ‘(𝑗 + 𝑀)) = (ℤ‘(𝑀 + 𝑗)))
111103, 108, 1103eltr3d 2845 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑗)))
112111adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → (𝑀 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑗)))
113 fzss2 13464 . . . . . . . . . . . 12 ((𝑀 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑗)) → (𝑗...(𝑀 + 𝑗)) ⊆ (𝑗...(𝑀 + 𝑁)))
114112, 113syl 17 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → (𝑗...(𝑀 + 𝑗)) ⊆ (𝑗...(𝑀 + 𝑁)))
115 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗)))
11686adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → ((0 + 𝑗)...(𝑀 + 𝑗)) = (𝑗...(𝑀 + 𝑗)))
117115, 116eleqtrd 2833 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ (𝑗...(𝑀 + 𝑗)))
118114, 117sseldd 3930 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ (𝑗...(𝑀 + 𝑁)))
11998, 99, 118, 59syl21anc 837 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ ℕ0)
12098, 99, 119, 81syl21anc 837 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝐵 ∈ ℂ)
12197, 120fsumcl 15640 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 ∈ ℂ)
122121addridd 11313 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 + 0) = Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵)
12383, 96, 1223eqtrrd 2771 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 = Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵)
124 fzval3 13634 . . . . . . . . . 10 ((𝑀 + 𝑁) ∈ ℤ → (𝑗...(𝑀 + 𝑁)) = (𝑗..^((𝑀 + 𝑁) + 1)))
12538, 124syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑁)) = (𝑗..^((𝑀 + 𝑁) + 1)))
126125ineq2d 4167 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → ((0..^𝑗) ∩ (𝑗...(𝑀 + 𝑁))) = ((0..^𝑗) ∩ (𝑗..^((𝑀 + 𝑁) + 1))))
127 fzodisj 13593 . . . . . . . 8 ((0..^𝑗) ∩ (𝑗..^((𝑀 + 𝑁) + 1))) = ∅
128126, 127eqtrdi 2782 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → ((0..^𝑗) ∩ (𝑗...(𝑀 + 𝑁))) = ∅)
12938peano2zd 12580 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝑀 + 𝑁) + 1) ∈ ℤ)
13029nn0ge0d 12445 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 0 ≤ 𝑗)
131129zred 12577 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝑀 + 𝑁) + 1) ∈ ℝ)
13238zred 12577 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ∈ ℝ)
133 nn0addge2 12428 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → 𝑁 ≤ (𝑀 + 𝑁))
13443, 4, 133syl2anc 584 . . . . . . . . . . . . 13 (𝜑𝑁 ≤ (𝑀 + 𝑁))
135134adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ≤ (𝑀 + 𝑁))
136132lep1d 12053 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ≤ ((𝑀 + 𝑁) + 1))
13744, 132, 131, 135, 136letrd 11270 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ≤ ((𝑀 + 𝑁) + 1))
13840, 44, 131, 47, 137letrd 11270 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ≤ ((𝑀 + 𝑁) + 1))
1393, 129, 2, 130, 138elfzd 13415 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (0...((𝑀 + 𝑁) + 1)))
140 fzosplit 13592 . . . . . . . . 9 (𝑗 ∈ (0...((𝑀 + 𝑁) + 1)) → (0..^((𝑀 + 𝑁) + 1)) = ((0..^𝑗) ∪ (𝑗..^((𝑀 + 𝑁) + 1))))
141139, 140syl 17 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (0..^((𝑀 + 𝑁) + 1)) = ((0..^𝑗) ∪ (𝑗..^((𝑀 + 𝑁) + 1))))
142 fzval3 13634 . . . . . . . . 9 ((𝑀 + 𝑁) ∈ ℤ → (0...(𝑀 + 𝑁)) = (0..^((𝑀 + 𝑁) + 1)))
14338, 142syl 17 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (0...(𝑀 + 𝑁)) = (0..^((𝑀 + 𝑁) + 1)))
144125uneq2d 4115 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → ((0..^𝑗) ∪ (𝑗...(𝑀 + 𝑁))) = ((0..^𝑗) ∪ (𝑗..^((𝑀 + 𝑁) + 1))))
145141, 143, 1443eqtr4d 2776 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (0...(𝑀 + 𝑁)) = ((0..^𝑗) ∪ (𝑗...(𝑀 + 𝑁))))
146 fzfid 13880 . . . . . . . 8 (𝜑 → (0...(𝑀 + 𝑁)) ∈ Fin)
147146adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (0...(𝑀 + 𝑁)) ∈ Fin)
148 simpl 482 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝜑)
1491adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝑗 ∈ (1...𝑁))
150 fz0ssnn0 13522 . . . . . . . . . 10 (0...(𝑀 + 𝑁)) ⊆ ℕ0
151 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
152150, 151sselid 3927 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝑘 ∈ ℕ0)
153148, 149, 152, 81syl21anc 837 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝐵 ∈ ℂ)
154153anass1rs 655 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...(𝑀 + 𝑁))) → 𝐵 ∈ ℂ)
155128, 145, 147, 154fsumsplit 15648 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵 = (Σ𝑘 ∈ (0..^𝑗)𝐵 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵))
156 fzsum2sub.4 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0..^𝑗)) → 𝐵 = 0)
157156sumeq2dv 15609 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (0..^𝑗)𝐵 = Σ𝑘 ∈ (0..^𝑗)0)
158 fzofi 13881 . . . . . . . . 9 (0..^𝑗) ∈ Fin
159 sumz 15629 . . . . . . . . . 10 (((0..^𝑗) ⊆ (ℤ‘0) ∨ (0..^𝑗) ∈ Fin) → Σ𝑘 ∈ (0..^𝑗)0 = 0)
160159olcs 876 . . . . . . . . 9 ((0..^𝑗) ∈ Fin → Σ𝑘 ∈ (0..^𝑗)0 = 0)
161158, 160ax-mp 5 . . . . . . . 8 Σ𝑘 ∈ (0..^𝑗)0 = 0
162157, 161eqtrdi 2782 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (0..^𝑗)𝐵 = 0)
163162oveq1d 7361 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (Σ𝑘 ∈ (0..^𝑗)𝐵 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵) = (0 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵))
16452, 82fsumcl 15640 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵 ∈ ℂ)
165164addlidd 11314 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (0 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵) = Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵)
166155, 163, 1653eqtrrd 2771 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
167123, 166eqtrd 2766 . . . 4 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
16826, 167eqtrd 2766 . . 3 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑖 ∈ (0...𝑀)𝐴 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
169168sumeq2dv 15609 . 2 (𝜑 → Σ𝑗 ∈ (1...𝑁𝑖 ∈ (0...𝑀)𝐴 = Σ𝑗 ∈ (1...𝑁𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
170 fzfid 13880 . . 3 (𝜑 → (0...𝑀) ∈ Fin)
171 fzfid 13880 . . 3 (𝜑 → (1...𝑁) ∈ Fin)
17224anasss 466 . . . 4 ((𝜑 ∧ (𝑗 ∈ (1...𝑁) ∧ 𝑖 ∈ (0...𝑀))) → 𝐴 ∈ ℂ)
173172ancom2s 650 . . 3 ((𝜑 ∧ (𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (1...𝑁))) → 𝐴 ∈ ℂ)
174170, 171, 173fsumcom 15682 . 2 (𝜑 → Σ𝑖 ∈ (0...𝑀𝑗 ∈ (1...𝑁)𝐴 = Σ𝑗 ∈ (1...𝑁𝑖 ∈ (0...𝑀)𝐴)
175146, 171, 153fsumcom 15682 . 2 (𝜑 → Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑗 ∈ (1...𝑁)𝐵 = Σ𝑗 ∈ (1...𝑁𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
176169, 174, 1753eqtr4d 2776 1 (𝜑 → Σ𝑖 ∈ (0...𝑀𝑗 ∈ (1...𝑁)𝐴 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑗 ∈ (1...𝑁)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cun 3895  cin 3896  wss 3897  c0 4280   class class class wbr 5089  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cmin 11344  -cneg 11345  cn 12125  0cn0 12381  cz 12468  cuz 12732  ...cfz 13407  ..^cfzo 13554  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594
This theorem is referenced by:  breprexplemc  34645
  Copyright terms: Public domain W3C validator