Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsum2dsub Structured version   Visualization version   GIF version

Theorem fsum2dsub 34598
Description: Lemma for breprexp 34624- Re-index a double sum, using difference of the initial indices. (Contributed by Thierry Arnoux, 7-Dec-2021.)
Hypotheses
Ref Expression
fzsum2sub.m (𝜑𝑀 ∈ ℕ0)
fzsum2sub.n (𝜑𝑁 ∈ ℕ0)
fzsum2sub.1 (𝑖 = (𝑘𝑗) → 𝐴 = 𝐵)
fzsum2sub.2 ((𝜑𝑖 ∈ (ℤ‘-𝑗) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ ℂ)
fzsum2sub.3 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) → 𝐵 = 0)
fzsum2sub.4 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0..^𝑗)) → 𝐵 = 0)
Assertion
Ref Expression
fsum2dsub (𝜑 → Σ𝑖 ∈ (0...𝑀𝑗 ∈ (1...𝑁)𝐴 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑗 ∈ (1...𝑁)𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑖   𝑖,𝑀,𝑗,𝑘   𝑖,𝑁,𝑗,𝑘   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑗,𝑘)

Proof of Theorem fsum2dsub
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
21elfzelzd 13486 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℤ)
3 0zd 12541 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → 0 ∈ ℤ)
4 fzsum2sub.m . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
54nn0zd 12555 . . . . . 6 (𝜑𝑀 ∈ ℤ)
65adantr 480 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℤ)
7 simpll 766 . . . . . 6 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝜑)
8 fz1ssnn 13516 . . . . . . . . . . . 12 (1...𝑁) ⊆ ℕ
9 nnssnn0 12445 . . . . . . . . . . . 12 ℕ ⊆ ℕ0
108, 9sstri 3956 . . . . . . . . . . 11 (1...𝑁) ⊆ ℕ0
1110, 1sselid 3944 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ0)
12 nn0uz 12835 . . . . . . . . . 10 0 = (ℤ‘0)
1311, 12eleqtrdi 2838 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (ℤ‘0))
14 neg0 11468 . . . . . . . . . 10 -0 = 0
15 uzneg 12813 . . . . . . . . . 10 (𝑗 ∈ (ℤ‘0) → -0 ∈ (ℤ‘-𝑗))
1614, 15eqeltrrid 2833 . . . . . . . . 9 (𝑗 ∈ (ℤ‘0) → 0 ∈ (ℤ‘-𝑗))
17 fzss1 13524 . . . . . . . . 9 (0 ∈ (ℤ‘-𝑗) → (0...𝑀) ⊆ (-𝑗...𝑀))
1813, 16, 173syl 18 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (0...𝑀) ⊆ (-𝑗...𝑀))
19 fzssuz 13526 . . . . . . . 8 (-𝑗...𝑀) ⊆ (ℤ‘-𝑗)
2018, 19sstrdi 3959 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (0...𝑀) ⊆ (ℤ‘-𝑗))
2120sselda 3946 . . . . . 6 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝑖 ∈ (ℤ‘-𝑗))
221adantr 480 . . . . . 6 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝑗 ∈ (1...𝑁))
23 fzsum2sub.2 . . . . . 6 ((𝜑𝑖 ∈ (ℤ‘-𝑗) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ ℂ)
247, 21, 22, 23syl3anc 1373 . . . . 5 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (0...𝑀)) → 𝐴 ∈ ℂ)
25 fzsum2sub.1 . . . . 5 (𝑖 = (𝑘𝑗) → 𝐴 = 𝐵)
262, 3, 6, 24, 25fsumshft 15746 . . . 4 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑖 ∈ (0...𝑀)𝐴 = Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵)
274adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℕ0)
288, 1sselid 3944 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ)
2928nnnn0d 12503 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ0)
3027, 29nn0addcld 12507 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ ℕ0)
3130nn0red 12504 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ ℝ)
3231ltp1d 12113 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) < ((𝑀 + 𝑗) + 1))
33 fzdisj 13512 . . . . . . . 8 ((𝑀 + 𝑗) < ((𝑀 + 𝑗) + 1) → ((𝑗...(𝑀 + 𝑗)) ∩ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) = ∅)
3432, 33syl 17 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝑗...(𝑀 + 𝑗)) ∩ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) = ∅)
35 fzsum2sub.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
3635nn0zd 12555 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
375, 36zaddcld 12642 . . . . . . . . . 10 (𝜑 → (𝑀 + 𝑁) ∈ ℤ)
3837adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ∈ ℤ)
3930nn0zd 12555 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ ℤ)
4028nnred 12201 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℝ)
41 nn0addge2 12489 . . . . . . . . . 10 ((𝑗 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → 𝑗 ≤ (𝑀 + 𝑗))
4240, 27, 41syl2anc 584 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ≤ (𝑀 + 𝑗))
4335nn0red 12504 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ∈ ℝ)
4527nn0red 12504 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℝ)
46 elfzle2 13489 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑁) → 𝑗𝑁)
4746adantl 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗𝑁)
4840, 44, 45, 47leadd2dd 11793 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ≤ (𝑀 + 𝑁))
492, 38, 39, 42, 48elfzd 13476 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑗) ∈ (𝑗...(𝑀 + 𝑁)))
50 fzsplit 13511 . . . . . . . 8 ((𝑀 + 𝑗) ∈ (𝑗...(𝑀 + 𝑁)) → (𝑗...(𝑀 + 𝑁)) = ((𝑗...(𝑀 + 𝑗)) ∪ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))))
5149, 50syl 17 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑁)) = ((𝑗...(𝑀 + 𝑗)) ∪ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))))
52 fzfid 13938 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑁)) ∈ Fin)
53 simpll 766 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝜑)
541adantr 480 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑗 ∈ (1...𝑁))
5510, 54sselid 3944 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑗 ∈ ℕ0)
56 fz2ssnn0 32708 . . . . . . . . . 10 (𝑗 ∈ ℕ0 → (𝑗...(𝑀 + 𝑁)) ⊆ ℕ0)
5755, 56syl 17 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → (𝑗...(𝑀 + 𝑁)) ⊆ ℕ0)
58 simpr 484 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑘 ∈ (𝑗...(𝑀 + 𝑁)))
5957, 58sseldd 3947 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝑘 ∈ ℕ0)
6025eleq1d 2813 . . . . . . . . 9 (𝑖 = (𝑘𝑗) → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
61 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (ℤ‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝜑)
62 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (ℤ‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝑖 ∈ (ℤ‘-𝑗))
63 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (ℤ‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
6461, 62, 63, 23syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (ℤ‘-𝑗)) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ ℂ)
6564an32s 652 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑖 ∈ (ℤ‘-𝑗)) → 𝐴 ∈ ℂ)
6665ralrimiva 3125 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → ∀𝑖 ∈ (ℤ‘-𝑗)𝐴 ∈ ℂ)
6766adantr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → ∀𝑖 ∈ (ℤ‘-𝑗)𝐴 ∈ ℂ)
68 nnsscn 12191 . . . . . . . . . . . . 13 ℕ ⊆ ℂ
698, 68sstri 3956 . . . . . . . . . . . 12 (1...𝑁) ⊆ ℂ
70 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ (1...𝑁))
7169, 70sselid 3944 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ ℂ)
72 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
7372nn0cnd 12505 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
7471, 73negsubdi2d 11549 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → -(𝑗𝑘) = (𝑘𝑗))
7570elfzelzd 13486 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ ℤ)
76 eluzmn 12800 . . . . . . . . . . . 12 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ (ℤ‘(𝑗𝑘)))
7775, 72, 76syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ (ℤ‘(𝑗𝑘)))
78 uzneg 12813 . . . . . . . . . . 11 (𝑗 ∈ (ℤ‘(𝑗𝑘)) → -(𝑗𝑘) ∈ (ℤ‘-𝑗))
7977, 78syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → -(𝑗𝑘) ∈ (ℤ‘-𝑗))
8074, 79eqeltrrd 2829 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → (𝑘𝑗) ∈ (ℤ‘-𝑗))
8160, 67, 80rspcdva 3589 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
8253, 54, 59, 81syl21anc 837 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (𝑗...(𝑀 + 𝑁))) → 𝐵 ∈ ℂ)
8334, 51, 52, 82fsumsplit 15707 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵 = (Σ𝑘 ∈ (𝑗...(𝑀 + 𝑗))𝐵 + Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵))
842zcnd 12639 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℂ)
8584addlidd 11375 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → (0 + 𝑗) = 𝑗)
8685oveq1d 7402 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → ((0 + 𝑗)...(𝑀 + 𝑗)) = (𝑗...(𝑀 + 𝑗)))
8786eqcomd 2735 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑗)) = ((0 + 𝑗)...(𝑀 + 𝑗)))
8887sumeq1d 15666 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑗))𝐵 = Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵)
89 fzsum2sub.3 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) → 𝐵 = 0)
9089sumeq2dv 15668 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵 = Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0)
91 fzfi 13937 . . . . . . . . 9 (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ∈ Fin
92 sumz 15688 . . . . . . . . . 10 (((((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ⊆ (ℤ‘0) ∨ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ∈ Fin) → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0 = 0)
9392olcs 876 . . . . . . . . 9 ((((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁)) ∈ Fin → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0 = 0)
9491, 93ax-mp 5 . . . . . . . 8 Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))0 = 0
9590, 94eqtrdi 2780 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵 = 0)
9688, 95oveq12d 7405 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (Σ𝑘 ∈ (𝑗...(𝑀 + 𝑗))𝐵 + Σ𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))𝐵) = (Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 + 0))
97 fzfid 13938 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → ((0 + 𝑗)...(𝑀 + 𝑗)) ∈ Fin)
98 simpll 766 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝜑)
991adantr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑗 ∈ (1...𝑁))
100 elfzuz3 13482 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑁) → 𝑁 ∈ (ℤ𝑗))
101100adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ∈ (ℤ𝑗))
102 eluzadd 12822 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ𝑗) ∧ 𝑀 ∈ ℤ) → (𝑁 + 𝑀) ∈ (ℤ‘(𝑗 + 𝑀)))
103101, 6, 102syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑁 + 𝑀) ∈ (ℤ‘(𝑗 + 𝑀)))
10435nn0cnd 12505 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℂ)
105104adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ∈ ℂ)
106 zsscn 12537 . . . . . . . . . . . . . . . 16 ℤ ⊆ ℂ
107106, 6sselid 3944 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀 ∈ ℂ)
108105, 107addcomd 11376 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑁 + 𝑀) = (𝑀 + 𝑁))
10984, 107addcomd 11376 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗 + 𝑀) = (𝑀 + 𝑗))
110109fveq2d 6862 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑁)) → (ℤ‘(𝑗 + 𝑀)) = (ℤ‘(𝑀 + 𝑗)))
111103, 108, 1103eltr3d 2842 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑗)))
112111adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → (𝑀 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑗)))
113 fzss2 13525 . . . . . . . . . . . 12 ((𝑀 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑗)) → (𝑗...(𝑀 + 𝑗)) ⊆ (𝑗...(𝑀 + 𝑁)))
114112, 113syl 17 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → (𝑗...(𝑀 + 𝑗)) ⊆ (𝑗...(𝑀 + 𝑁)))
115 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗)))
11686adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → ((0 + 𝑗)...(𝑀 + 𝑗)) = (𝑗...(𝑀 + 𝑗)))
117115, 116eleqtrd 2830 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ (𝑗...(𝑀 + 𝑗)))
118114, 117sseldd 3947 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ (𝑗...(𝑀 + 𝑁)))
11998, 99, 118, 59syl21anc 837 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝑘 ∈ ℕ0)
12098, 99, 119, 81syl21anc 837 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))) → 𝐵 ∈ ℂ)
12197, 120fsumcl 15699 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 ∈ ℂ)
122121addridd 11374 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 + 0) = Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵)
12383, 96, 1223eqtrrd 2769 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 = Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵)
124 fzval3 13695 . . . . . . . . . 10 ((𝑀 + 𝑁) ∈ ℤ → (𝑗...(𝑀 + 𝑁)) = (𝑗..^((𝑀 + 𝑁) + 1)))
12538, 124syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗...(𝑀 + 𝑁)) = (𝑗..^((𝑀 + 𝑁) + 1)))
126125ineq2d 4183 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → ((0..^𝑗) ∩ (𝑗...(𝑀 + 𝑁))) = ((0..^𝑗) ∩ (𝑗..^((𝑀 + 𝑁) + 1))))
127 fzodisj 13654 . . . . . . . 8 ((0..^𝑗) ∩ (𝑗..^((𝑀 + 𝑁) + 1))) = ∅
128126, 127eqtrdi 2780 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → ((0..^𝑗) ∩ (𝑗...(𝑀 + 𝑁))) = ∅)
12938peano2zd 12641 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝑀 + 𝑁) + 1) ∈ ℤ)
13029nn0ge0d 12506 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 0 ≤ 𝑗)
131129zred 12638 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝑀 + 𝑁) + 1) ∈ ℝ)
13238zred 12638 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ∈ ℝ)
133 nn0addge2 12489 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → 𝑁 ≤ (𝑀 + 𝑁))
13443, 4, 133syl2anc 584 . . . . . . . . . . . . 13 (𝜑𝑁 ≤ (𝑀 + 𝑁))
135134adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ≤ (𝑀 + 𝑁))
136132lep1d 12114 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑀 + 𝑁) ≤ ((𝑀 + 𝑁) + 1))
13744, 132, 131, 135, 136letrd 11331 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ≤ ((𝑀 + 𝑁) + 1))
13840, 44, 131, 47, 137letrd 11331 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ≤ ((𝑀 + 𝑁) + 1))
1393, 129, 2, 130, 138elfzd 13476 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (0...((𝑀 + 𝑁) + 1)))
140 fzosplit 13653 . . . . . . . . 9 (𝑗 ∈ (0...((𝑀 + 𝑁) + 1)) → (0..^((𝑀 + 𝑁) + 1)) = ((0..^𝑗) ∪ (𝑗..^((𝑀 + 𝑁) + 1))))
141139, 140syl 17 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (0..^((𝑀 + 𝑁) + 1)) = ((0..^𝑗) ∪ (𝑗..^((𝑀 + 𝑁) + 1))))
142 fzval3 13695 . . . . . . . . 9 ((𝑀 + 𝑁) ∈ ℤ → (0...(𝑀 + 𝑁)) = (0..^((𝑀 + 𝑁) + 1)))
14338, 142syl 17 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (0...(𝑀 + 𝑁)) = (0..^((𝑀 + 𝑁) + 1)))
144125uneq2d 4131 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → ((0..^𝑗) ∪ (𝑗...(𝑀 + 𝑁))) = ((0..^𝑗) ∪ (𝑗..^((𝑀 + 𝑁) + 1))))
145141, 143, 1443eqtr4d 2774 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (0...(𝑀 + 𝑁)) = ((0..^𝑗) ∪ (𝑗...(𝑀 + 𝑁))))
146 fzfid 13938 . . . . . . . 8 (𝜑 → (0...(𝑀 + 𝑁)) ∈ Fin)
147146adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (0...(𝑀 + 𝑁)) ∈ Fin)
148 simpl 482 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝜑)
1491adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝑗 ∈ (1...𝑁))
150 fz0ssnn0 13583 . . . . . . . . . 10 (0...(𝑀 + 𝑁)) ⊆ ℕ0
151 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
152150, 151sselid 3944 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝑘 ∈ ℕ0)
153148, 149, 152, 81syl21anc 837 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...𝑁))) → 𝐵 ∈ ℂ)
154153anass1rs 655 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...(𝑀 + 𝑁))) → 𝐵 ∈ ℂ)
155128, 145, 147, 154fsumsplit 15707 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵 = (Σ𝑘 ∈ (0..^𝑗)𝐵 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵))
156 fzsum2sub.4 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0..^𝑗)) → 𝐵 = 0)
157156sumeq2dv 15668 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (0..^𝑗)𝐵 = Σ𝑘 ∈ (0..^𝑗)0)
158 fzofi 13939 . . . . . . . . 9 (0..^𝑗) ∈ Fin
159 sumz 15688 . . . . . . . . . 10 (((0..^𝑗) ⊆ (ℤ‘0) ∨ (0..^𝑗) ∈ Fin) → Σ𝑘 ∈ (0..^𝑗)0 = 0)
160159olcs 876 . . . . . . . . 9 ((0..^𝑗) ∈ Fin → Σ𝑘 ∈ (0..^𝑗)0 = 0)
161158, 160ax-mp 5 . . . . . . . 8 Σ𝑘 ∈ (0..^𝑗)0 = 0
162157, 161eqtrdi 2780 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (0..^𝑗)𝐵 = 0)
163162oveq1d 7402 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (Σ𝑘 ∈ (0..^𝑗)𝐵 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵) = (0 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵))
16452, 82fsumcl 15699 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵 ∈ ℂ)
165164addlidd 11375 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (0 + Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵) = Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵)
166155, 163, 1653eqtrrd 2769 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ (𝑗...(𝑀 + 𝑁))𝐵 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
167123, 166eqtrd 2764 . . . 4 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑘 ∈ ((0 + 𝑗)...(𝑀 + 𝑗))𝐵 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
16826, 167eqtrd 2764 . . 3 ((𝜑𝑗 ∈ (1...𝑁)) → Σ𝑖 ∈ (0...𝑀)𝐴 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
169168sumeq2dv 15668 . 2 (𝜑 → Σ𝑗 ∈ (1...𝑁𝑖 ∈ (0...𝑀)𝐴 = Σ𝑗 ∈ (1...𝑁𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
170 fzfid 13938 . . 3 (𝜑 → (0...𝑀) ∈ Fin)
171 fzfid 13938 . . 3 (𝜑 → (1...𝑁) ∈ Fin)
17224anasss 466 . . . 4 ((𝜑 ∧ (𝑗 ∈ (1...𝑁) ∧ 𝑖 ∈ (0...𝑀))) → 𝐴 ∈ ℂ)
173172ancom2s 650 . . 3 ((𝜑 ∧ (𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (1...𝑁))) → 𝐴 ∈ ℂ)
174170, 171, 173fsumcom 15741 . 2 (𝜑 → Σ𝑖 ∈ (0...𝑀𝑗 ∈ (1...𝑁)𝐴 = Σ𝑗 ∈ (1...𝑁𝑖 ∈ (0...𝑀)𝐴)
175146, 171, 153fsumcom 15741 . 2 (𝜑 → Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑗 ∈ (1...𝑁)𝐵 = Σ𝑗 ∈ (1...𝑁𝑘 ∈ (0...(𝑀 + 𝑁))𝐵)
176169, 174, 1753eqtr4d 2774 1 (𝜑 → Σ𝑖 ∈ (0...𝑀𝑗 ∈ (1...𝑁)𝐴 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑗 ∈ (1...𝑁)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cun 3912  cin 3913  wss 3914  c0 4296   class class class wbr 5107  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  -cneg 11406  cn 12186  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  ..^cfzo 13615  Σcsu 15652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653
This theorem is referenced by:  breprexplemc  34623
  Copyright terms: Public domain W3C validator