Step | Hyp | Ref
| Expression |
1 | | fsumge0.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ Fin) |
2 | 1 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → 𝐴 ∈ Fin) |
3 | | fsumge0.2 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
4 | 3 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
5 | | fsumge0.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) |
6 | 5 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) |
7 | | snssi 4741 |
. . . . . . . . . 10
⊢ (𝑚 ∈ 𝐴 → {𝑚} ⊆ 𝐴) |
8 | 7 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → {𝑚} ⊆ 𝐴) |
9 | 2, 4, 6, 8 | fsumless 15508 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → Σ𝑘 ∈ {𝑚}𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
10 | 9 | adantlr 712 |
. . . . . . 7
⊢ (((𝜑 ∧ Σ𝑘 ∈ 𝐴 𝐵 = 0) ∧ 𝑚 ∈ 𝐴) → Σ𝑘 ∈ {𝑚}𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
11 | | simpr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ Σ𝑘 ∈ 𝐴 𝐵 = 0) ∧ 𝑚 ∈ 𝐴) → 𝑚 ∈ 𝐴) |
12 | 3, 5 | jca 512 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) |
13 | 12 | ralrimiva 3103 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) |
14 | 13 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ Σ𝑘 ∈ 𝐴 𝐵 = 0) → ∀𝑘 ∈ 𝐴 (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) |
15 | | nfcsb1v 3857 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐵 |
16 | 15 | nfel1 2923 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐵 ∈ ℝ |
17 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘0 |
18 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘
≤ |
19 | 17, 18, 15 | nfbr 5121 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘0 ≤
⦋𝑚 / 𝑘⦌𝐵 |
20 | 16, 19 | nfan 1902 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(⦋𝑚 / 𝑘⦌𝐵 ∈ ℝ ∧ 0 ≤
⦋𝑚 / 𝑘⦌𝐵) |
21 | | csbeq1a 3846 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑚 → 𝐵 = ⦋𝑚 / 𝑘⦌𝐵) |
22 | 21 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑚 → (𝐵 ∈ ℝ ↔ ⦋𝑚 / 𝑘⦌𝐵 ∈ ℝ)) |
23 | 21 | breq2d 5086 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑚 → (0 ≤ 𝐵 ↔ 0 ≤ ⦋𝑚 / 𝑘⦌𝐵)) |
24 | 22, 23 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑚 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ↔ (⦋𝑚 / 𝑘⦌𝐵 ∈ ℝ ∧ 0 ≤
⦋𝑚 / 𝑘⦌𝐵))) |
25 | 20, 24 | rspc 3549 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (⦋𝑚 / 𝑘⦌𝐵 ∈ ℝ ∧ 0 ≤
⦋𝑚 / 𝑘⦌𝐵))) |
26 | 14, 25 | mpan9 507 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ Σ𝑘 ∈ 𝐴 𝐵 = 0) ∧ 𝑚 ∈ 𝐴) → (⦋𝑚 / 𝑘⦌𝐵 ∈ ℝ ∧ 0 ≤
⦋𝑚 / 𝑘⦌𝐵)) |
27 | 26 | simpld 495 |
. . . . . . . . 9
⊢ (((𝜑 ∧ Σ𝑘 ∈ 𝐴 𝐵 = 0) ∧ 𝑚 ∈ 𝐴) → ⦋𝑚 / 𝑘⦌𝐵 ∈ ℝ) |
28 | 27 | recnd 11003 |
. . . . . . . 8
⊢ (((𝜑 ∧ Σ𝑘 ∈ 𝐴 𝐵 = 0) ∧ 𝑚 ∈ 𝐴) → ⦋𝑚 / 𝑘⦌𝐵 ∈ ℂ) |
29 | | sumsns 15462 |
. . . . . . . 8
⊢ ((𝑚 ∈ 𝐴 ∧ ⦋𝑚 / 𝑘⦌𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑚}𝐵 = ⦋𝑚 / 𝑘⦌𝐵) |
30 | 11, 28, 29 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ Σ𝑘 ∈ 𝐴 𝐵 = 0) ∧ 𝑚 ∈ 𝐴) → Σ𝑘 ∈ {𝑚}𝐵 = ⦋𝑚 / 𝑘⦌𝐵) |
31 | | simplr 766 |
. . . . . . 7
⊢ (((𝜑 ∧ Σ𝑘 ∈ 𝐴 𝐵 = 0) ∧ 𝑚 ∈ 𝐴) → Σ𝑘 ∈ 𝐴 𝐵 = 0) |
32 | 10, 30, 31 | 3brtr3d 5105 |
. . . . . 6
⊢ (((𝜑 ∧ Σ𝑘 ∈ 𝐴 𝐵 = 0) ∧ 𝑚 ∈ 𝐴) → ⦋𝑚 / 𝑘⦌𝐵 ≤ 0) |
33 | 26 | simprd 496 |
. . . . . 6
⊢ (((𝜑 ∧ Σ𝑘 ∈ 𝐴 𝐵 = 0) ∧ 𝑚 ∈ 𝐴) → 0 ≤ ⦋𝑚 / 𝑘⦌𝐵) |
34 | | 0re 10977 |
. . . . . . 7
⊢ 0 ∈
ℝ |
35 | | letri3 11060 |
. . . . . . 7
⊢
((⦋𝑚 /
𝑘⦌𝐵 ∈ ℝ ∧ 0 ∈
ℝ) → (⦋𝑚 / 𝑘⦌𝐵 = 0 ↔ (⦋𝑚 / 𝑘⦌𝐵 ≤ 0 ∧ 0 ≤ ⦋𝑚 / 𝑘⦌𝐵))) |
36 | 27, 34, 35 | sylancl 586 |
. . . . . 6
⊢ (((𝜑 ∧ Σ𝑘 ∈ 𝐴 𝐵 = 0) ∧ 𝑚 ∈ 𝐴) → (⦋𝑚 / 𝑘⦌𝐵 = 0 ↔ (⦋𝑚 / 𝑘⦌𝐵 ≤ 0 ∧ 0 ≤ ⦋𝑚 / 𝑘⦌𝐵))) |
37 | 32, 33, 36 | mpbir2and 710 |
. . . . 5
⊢ (((𝜑 ∧ Σ𝑘 ∈ 𝐴 𝐵 = 0) ∧ 𝑚 ∈ 𝐴) → ⦋𝑚 / 𝑘⦌𝐵 = 0) |
38 | 37 | ralrimiva 3103 |
. . . 4
⊢ ((𝜑 ∧ Σ𝑘 ∈ 𝐴 𝐵 = 0) → ∀𝑚 ∈ 𝐴 ⦋𝑚 / 𝑘⦌𝐵 = 0) |
39 | | nfv 1917 |
. . . . 5
⊢
Ⅎ𝑚 𝐵 = 0 |
40 | 15 | nfeq1 2922 |
. . . . 5
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐵 = 0 |
41 | 21 | eqeq1d 2740 |
. . . . 5
⊢ (𝑘 = 𝑚 → (𝐵 = 0 ↔ ⦋𝑚 / 𝑘⦌𝐵 = 0)) |
42 | 39, 40, 41 | cbvralw 3373 |
. . . 4
⊢
(∀𝑘 ∈
𝐴 𝐵 = 0 ↔ ∀𝑚 ∈ 𝐴 ⦋𝑚 / 𝑘⦌𝐵 = 0) |
43 | 38, 42 | sylibr 233 |
. . 3
⊢ ((𝜑 ∧ Σ𝑘 ∈ 𝐴 𝐵 = 0) → ∀𝑘 ∈ 𝐴 𝐵 = 0) |
44 | 43 | ex 413 |
. 2
⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 = 0 → ∀𝑘 ∈ 𝐴 𝐵 = 0)) |
45 | | sumz 15434 |
. . . . 5
⊢ ((𝐴 ⊆
(ℤ≥‘0) ∨ 𝐴 ∈ Fin) → Σ𝑘 ∈ 𝐴 0 = 0) |
46 | 45 | olcs 873 |
. . . 4
⊢ (𝐴 ∈ Fin → Σ𝑘 ∈ 𝐴 0 = 0) |
47 | | sumeq2 15406 |
. . . . 5
⊢
(∀𝑘 ∈
𝐴 𝐵 = 0 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 0) |
48 | 47 | eqeq1d 2740 |
. . . 4
⊢
(∀𝑘 ∈
𝐴 𝐵 = 0 → (Σ𝑘 ∈ 𝐴 𝐵 = 0 ↔ Σ𝑘 ∈ 𝐴 0 = 0)) |
49 | 46, 48 | syl5ibrcom 246 |
. . 3
⊢ (𝐴 ∈ Fin →
(∀𝑘 ∈ 𝐴 𝐵 = 0 → Σ𝑘 ∈ 𝐴 𝐵 = 0)) |
50 | 1, 49 | syl 17 |
. 2
⊢ (𝜑 → (∀𝑘 ∈ 𝐴 𝐵 = 0 → Σ𝑘 ∈ 𝐴 𝐵 = 0)) |
51 | 44, 50 | impbid 211 |
1
⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 = 0 ↔ ∀𝑘 ∈ 𝐴 𝐵 = 0)) |