MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsum00 Structured version   Visualization version   GIF version

Theorem fsum00 15831
Description: A sum of nonnegative numbers is zero iff all terms are zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumge0.1 (𝜑𝐴 ∈ Fin)
fsumge0.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fsumge0.3 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
Assertion
Ref Expression
fsum00 (𝜑 → (Σ𝑘𝐴 𝐵 = 0 ↔ ∀𝑘𝐴 𝐵 = 0))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsum00
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fsumge0.1 . . . . . . . . . 10 (𝜑𝐴 ∈ Fin)
21adantr 480 . . . . . . . . 9 ((𝜑𝑚𝐴) → 𝐴 ∈ Fin)
3 fsumge0.2 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
43adantlr 715 . . . . . . . . 9 (((𝜑𝑚𝐴) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
5 fsumge0.3 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
65adantlr 715 . . . . . . . . 9 (((𝜑𝑚𝐴) ∧ 𝑘𝐴) → 0 ≤ 𝐵)
7 snssi 4813 . . . . . . . . . 10 (𝑚𝐴 → {𝑚} ⊆ 𝐴)
87adantl 481 . . . . . . . . 9 ((𝜑𝑚𝐴) → {𝑚} ⊆ 𝐴)
92, 4, 6, 8fsumless 15829 . . . . . . . 8 ((𝜑𝑚𝐴) → Σ𝑘 ∈ {𝑚}𝐵 ≤ Σ𝑘𝐴 𝐵)
109adantlr 715 . . . . . . 7 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → Σ𝑘 ∈ {𝑚}𝐵 ≤ Σ𝑘𝐴 𝐵)
11 simpr 484 . . . . . . . 8 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → 𝑚𝐴)
123, 5jca 511 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
1312ralrimiva 3144 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝐴 (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
1413adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) → ∀𝑘𝐴 (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
15 nfcsb1v 3933 . . . . . . . . . . . . . 14 𝑘𝑚 / 𝑘𝐵
1615nfel1 2920 . . . . . . . . . . . . 13 𝑘𝑚 / 𝑘𝐵 ∈ ℝ
17 nfcv 2903 . . . . . . . . . . . . . 14 𝑘0
18 nfcv 2903 . . . . . . . . . . . . . 14 𝑘
1917, 18, 15nfbr 5195 . . . . . . . . . . . . 13 𝑘0 ≤ 𝑚 / 𝑘𝐵
2016, 19nfan 1897 . . . . . . . . . . . 12 𝑘(𝑚 / 𝑘𝐵 ∈ ℝ ∧ 0 ≤ 𝑚 / 𝑘𝐵)
21 csbeq1a 3922 . . . . . . . . . . . . . 14 (𝑘 = 𝑚𝐵 = 𝑚 / 𝑘𝐵)
2221eleq1d 2824 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝐵 ∈ ℝ ↔ 𝑚 / 𝑘𝐵 ∈ ℝ))
2321breq2d 5160 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (0 ≤ 𝐵 ↔ 0 ≤ 𝑚 / 𝑘𝐵))
2422, 23anbi12d 632 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ↔ (𝑚 / 𝑘𝐵 ∈ ℝ ∧ 0 ≤ 𝑚 / 𝑘𝐵)))
2520, 24rspc 3610 . . . . . . . . . . 11 (𝑚𝐴 → (∀𝑘𝐴 (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (𝑚 / 𝑘𝐵 ∈ ℝ ∧ 0 ≤ 𝑚 / 𝑘𝐵)))
2614, 25mpan9 506 . . . . . . . . . 10 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → (𝑚 / 𝑘𝐵 ∈ ℝ ∧ 0 ≤ 𝑚 / 𝑘𝐵))
2726simpld 494 . . . . . . . . 9 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐵 ∈ ℝ)
2827recnd 11287 . . . . . . . 8 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐵 ∈ ℂ)
29 sumsns 15783 . . . . . . . 8 ((𝑚𝐴𝑚 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑚}𝐵 = 𝑚 / 𝑘𝐵)
3011, 28, 29syl2anc 584 . . . . . . 7 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → Σ𝑘 ∈ {𝑚}𝐵 = 𝑚 / 𝑘𝐵)
31 simplr 769 . . . . . . 7 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → Σ𝑘𝐴 𝐵 = 0)
3210, 30, 313brtr3d 5179 . . . . . 6 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐵 ≤ 0)
3326simprd 495 . . . . . 6 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → 0 ≤ 𝑚 / 𝑘𝐵)
34 0re 11261 . . . . . . 7 0 ∈ ℝ
35 letri3 11344 . . . . . . 7 ((𝑚 / 𝑘𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑚 / 𝑘𝐵 = 0 ↔ (𝑚 / 𝑘𝐵 ≤ 0 ∧ 0 ≤ 𝑚 / 𝑘𝐵)))
3627, 34, 35sylancl 586 . . . . . 6 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → (𝑚 / 𝑘𝐵 = 0 ↔ (𝑚 / 𝑘𝐵 ≤ 0 ∧ 0 ≤ 𝑚 / 𝑘𝐵)))
3732, 33, 36mpbir2and 713 . . . . 5 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐵 = 0)
3837ralrimiva 3144 . . . 4 ((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) → ∀𝑚𝐴 𝑚 / 𝑘𝐵 = 0)
39 nfv 1912 . . . . 5 𝑚 𝐵 = 0
4015nfeq1 2919 . . . . 5 𝑘𝑚 / 𝑘𝐵 = 0
4121eqeq1d 2737 . . . . 5 (𝑘 = 𝑚 → (𝐵 = 0 ↔ 𝑚 / 𝑘𝐵 = 0))
4239, 40, 41cbvralw 3304 . . . 4 (∀𝑘𝐴 𝐵 = 0 ↔ ∀𝑚𝐴 𝑚 / 𝑘𝐵 = 0)
4338, 42sylibr 234 . . 3 ((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) → ∀𝑘𝐴 𝐵 = 0)
4443ex 412 . 2 (𝜑 → (Σ𝑘𝐴 𝐵 = 0 → ∀𝑘𝐴 𝐵 = 0))
45 sumz 15755 . . . . 5 ((𝐴 ⊆ (ℤ‘0) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
4645olcs 876 . . . 4 (𝐴 ∈ Fin → Σ𝑘𝐴 0 = 0)
47 sumeq2 15727 . . . . 5 (∀𝑘𝐴 𝐵 = 0 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 0)
4847eqeq1d 2737 . . . 4 (∀𝑘𝐴 𝐵 = 0 → (Σ𝑘𝐴 𝐵 = 0 ↔ Σ𝑘𝐴 0 = 0))
4946, 48syl5ibrcom 247 . . 3 (𝐴 ∈ Fin → (∀𝑘𝐴 𝐵 = 0 → Σ𝑘𝐴 𝐵 = 0))
501, 49syl 17 . 2 (𝜑 → (∀𝑘𝐴 𝐵 = 0 → Σ𝑘𝐴 𝐵 = 0))
5144, 50impbid 212 1 (𝜑 → (Σ𝑘𝐴 𝐵 = 0 ↔ ∀𝑘𝐴 𝐵 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  csb 3908  wss 3963  {csn 4631   class class class wbr 5148  cfv 6563  Fincfn 8984  cc 11151  cr 11152  0cc0 11153  cle 11294  cuz 12876  Σcsu 15719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720
This theorem is referenced by:  ramcl  17063  rrxcph  25440  rrxmet  25456  jensen  27047  eqeelen  28934  axcgrid  28946  rrnmet  37816
  Copyright terms: Public domain W3C validator