MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsum00 Structured version   Visualization version   GIF version

Theorem fsum00 15705
Description: A sum of nonnegative numbers is zero iff all terms are zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumge0.1 (𝜑𝐴 ∈ Fin)
fsumge0.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fsumge0.3 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
Assertion
Ref Expression
fsum00 (𝜑 → (Σ𝑘𝐴 𝐵 = 0 ↔ ∀𝑘𝐴 𝐵 = 0))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsum00
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fsumge0.1 . . . . . . . . . 10 (𝜑𝐴 ∈ Fin)
21adantr 480 . . . . . . . . 9 ((𝜑𝑚𝐴) → 𝐴 ∈ Fin)
3 fsumge0.2 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
43adantlr 715 . . . . . . . . 9 (((𝜑𝑚𝐴) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
5 fsumge0.3 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
65adantlr 715 . . . . . . . . 9 (((𝜑𝑚𝐴) ∧ 𝑘𝐴) → 0 ≤ 𝐵)
7 snssi 4759 . . . . . . . . . 10 (𝑚𝐴 → {𝑚} ⊆ 𝐴)
87adantl 481 . . . . . . . . 9 ((𝜑𝑚𝐴) → {𝑚} ⊆ 𝐴)
92, 4, 6, 8fsumless 15703 . . . . . . . 8 ((𝜑𝑚𝐴) → Σ𝑘 ∈ {𝑚}𝐵 ≤ Σ𝑘𝐴 𝐵)
109adantlr 715 . . . . . . 7 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → Σ𝑘 ∈ {𝑚}𝐵 ≤ Σ𝑘𝐴 𝐵)
11 simpr 484 . . . . . . . 8 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → 𝑚𝐴)
123, 5jca 511 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
1312ralrimiva 3121 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝐴 (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
1413adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) → ∀𝑘𝐴 (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
15 nfcsb1v 3875 . . . . . . . . . . . . . 14 𝑘𝑚 / 𝑘𝐵
1615nfel1 2908 . . . . . . . . . . . . 13 𝑘𝑚 / 𝑘𝐵 ∈ ℝ
17 nfcv 2891 . . . . . . . . . . . . . 14 𝑘0
18 nfcv 2891 . . . . . . . . . . . . . 14 𝑘
1917, 18, 15nfbr 5139 . . . . . . . . . . . . 13 𝑘0 ≤ 𝑚 / 𝑘𝐵
2016, 19nfan 1899 . . . . . . . . . . . 12 𝑘(𝑚 / 𝑘𝐵 ∈ ℝ ∧ 0 ≤ 𝑚 / 𝑘𝐵)
21 csbeq1a 3865 . . . . . . . . . . . . . 14 (𝑘 = 𝑚𝐵 = 𝑚 / 𝑘𝐵)
2221eleq1d 2813 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝐵 ∈ ℝ ↔ 𝑚 / 𝑘𝐵 ∈ ℝ))
2321breq2d 5104 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (0 ≤ 𝐵 ↔ 0 ≤ 𝑚 / 𝑘𝐵))
2422, 23anbi12d 632 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ↔ (𝑚 / 𝑘𝐵 ∈ ℝ ∧ 0 ≤ 𝑚 / 𝑘𝐵)))
2520, 24rspc 3565 . . . . . . . . . . 11 (𝑚𝐴 → (∀𝑘𝐴 (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (𝑚 / 𝑘𝐵 ∈ ℝ ∧ 0 ≤ 𝑚 / 𝑘𝐵)))
2614, 25mpan9 506 . . . . . . . . . 10 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → (𝑚 / 𝑘𝐵 ∈ ℝ ∧ 0 ≤ 𝑚 / 𝑘𝐵))
2726simpld 494 . . . . . . . . 9 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐵 ∈ ℝ)
2827recnd 11143 . . . . . . . 8 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐵 ∈ ℂ)
29 sumsns 15657 . . . . . . . 8 ((𝑚𝐴𝑚 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑚}𝐵 = 𝑚 / 𝑘𝐵)
3011, 28, 29syl2anc 584 . . . . . . 7 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → Σ𝑘 ∈ {𝑚}𝐵 = 𝑚 / 𝑘𝐵)
31 simplr 768 . . . . . . 7 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → Σ𝑘𝐴 𝐵 = 0)
3210, 30, 313brtr3d 5123 . . . . . 6 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐵 ≤ 0)
3326simprd 495 . . . . . 6 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → 0 ≤ 𝑚 / 𝑘𝐵)
34 0re 11117 . . . . . . 7 0 ∈ ℝ
35 letri3 11201 . . . . . . 7 ((𝑚 / 𝑘𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑚 / 𝑘𝐵 = 0 ↔ (𝑚 / 𝑘𝐵 ≤ 0 ∧ 0 ≤ 𝑚 / 𝑘𝐵)))
3627, 34, 35sylancl 586 . . . . . 6 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → (𝑚 / 𝑘𝐵 = 0 ↔ (𝑚 / 𝑘𝐵 ≤ 0 ∧ 0 ≤ 𝑚 / 𝑘𝐵)))
3732, 33, 36mpbir2and 713 . . . . 5 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐵 = 0)
3837ralrimiva 3121 . . . 4 ((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) → ∀𝑚𝐴 𝑚 / 𝑘𝐵 = 0)
39 nfv 1914 . . . . 5 𝑚 𝐵 = 0
4015nfeq1 2907 . . . . 5 𝑘𝑚 / 𝑘𝐵 = 0
4121eqeq1d 2731 . . . . 5 (𝑘 = 𝑚 → (𝐵 = 0 ↔ 𝑚 / 𝑘𝐵 = 0))
4239, 40, 41cbvralw 3271 . . . 4 (∀𝑘𝐴 𝐵 = 0 ↔ ∀𝑚𝐴 𝑚 / 𝑘𝐵 = 0)
4338, 42sylibr 234 . . 3 ((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) → ∀𝑘𝐴 𝐵 = 0)
4443ex 412 . 2 (𝜑 → (Σ𝑘𝐴 𝐵 = 0 → ∀𝑘𝐴 𝐵 = 0))
45 sumz 15629 . . . . 5 ((𝐴 ⊆ (ℤ‘0) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
4645olcs 876 . . . 4 (𝐴 ∈ Fin → Σ𝑘𝐴 0 = 0)
47 sumeq2 15601 . . . . 5 (∀𝑘𝐴 𝐵 = 0 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 0)
4847eqeq1d 2731 . . . 4 (∀𝑘𝐴 𝐵 = 0 → (Σ𝑘𝐴 𝐵 = 0 ↔ Σ𝑘𝐴 0 = 0))
4946, 48syl5ibrcom 247 . . 3 (𝐴 ∈ Fin → (∀𝑘𝐴 𝐵 = 0 → Σ𝑘𝐴 𝐵 = 0))
501, 49syl 17 . 2 (𝜑 → (∀𝑘𝐴 𝐵 = 0 → Σ𝑘𝐴 𝐵 = 0))
5144, 50impbid 212 1 (𝜑 → (Σ𝑘𝐴 𝐵 = 0 ↔ ∀𝑘𝐴 𝐵 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  csb 3851  wss 3903  {csn 4577   class class class wbr 5092  cfv 6482  Fincfn 8872  cc 11007  cr 11008  0cc0 11009  cle 11150  cuz 12735  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594
This theorem is referenced by:  ramcl  16941  rrxcph  25290  rrxmet  25306  jensen  26897  eqeelen  28849  axcgrid  28861  rrnmet  37819
  Copyright terms: Public domain W3C validator