MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsum00 Structured version   Visualization version   GIF version

Theorem fsum00 15740
Description: A sum of nonnegative numbers is zero iff all terms are zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumge0.1 (𝜑𝐴 ∈ Fin)
fsumge0.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fsumge0.3 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
Assertion
Ref Expression
fsum00 (𝜑 → (Σ𝑘𝐴 𝐵 = 0 ↔ ∀𝑘𝐴 𝐵 = 0))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsum00
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fsumge0.1 . . . . . . . . . 10 (𝜑𝐴 ∈ Fin)
21adantr 481 . . . . . . . . 9 ((𝜑𝑚𝐴) → 𝐴 ∈ Fin)
3 fsumge0.2 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
43adantlr 713 . . . . . . . . 9 (((𝜑𝑚𝐴) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
5 fsumge0.3 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
65adantlr 713 . . . . . . . . 9 (((𝜑𝑚𝐴) ∧ 𝑘𝐴) → 0 ≤ 𝐵)
7 snssi 4810 . . . . . . . . . 10 (𝑚𝐴 → {𝑚} ⊆ 𝐴)
87adantl 482 . . . . . . . . 9 ((𝜑𝑚𝐴) → {𝑚} ⊆ 𝐴)
92, 4, 6, 8fsumless 15738 . . . . . . . 8 ((𝜑𝑚𝐴) → Σ𝑘 ∈ {𝑚}𝐵 ≤ Σ𝑘𝐴 𝐵)
109adantlr 713 . . . . . . 7 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → Σ𝑘 ∈ {𝑚}𝐵 ≤ Σ𝑘𝐴 𝐵)
11 simpr 485 . . . . . . . 8 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → 𝑚𝐴)
123, 5jca 512 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
1312ralrimiva 3146 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝐴 (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
1413adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) → ∀𝑘𝐴 (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
15 nfcsb1v 3917 . . . . . . . . . . . . . 14 𝑘𝑚 / 𝑘𝐵
1615nfel1 2919 . . . . . . . . . . . . 13 𝑘𝑚 / 𝑘𝐵 ∈ ℝ
17 nfcv 2903 . . . . . . . . . . . . . 14 𝑘0
18 nfcv 2903 . . . . . . . . . . . . . 14 𝑘
1917, 18, 15nfbr 5194 . . . . . . . . . . . . 13 𝑘0 ≤ 𝑚 / 𝑘𝐵
2016, 19nfan 1902 . . . . . . . . . . . 12 𝑘(𝑚 / 𝑘𝐵 ∈ ℝ ∧ 0 ≤ 𝑚 / 𝑘𝐵)
21 csbeq1a 3906 . . . . . . . . . . . . . 14 (𝑘 = 𝑚𝐵 = 𝑚 / 𝑘𝐵)
2221eleq1d 2818 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝐵 ∈ ℝ ↔ 𝑚 / 𝑘𝐵 ∈ ℝ))
2321breq2d 5159 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (0 ≤ 𝐵 ↔ 0 ≤ 𝑚 / 𝑘𝐵))
2422, 23anbi12d 631 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ↔ (𝑚 / 𝑘𝐵 ∈ ℝ ∧ 0 ≤ 𝑚 / 𝑘𝐵)))
2520, 24rspc 3600 . . . . . . . . . . 11 (𝑚𝐴 → (∀𝑘𝐴 (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (𝑚 / 𝑘𝐵 ∈ ℝ ∧ 0 ≤ 𝑚 / 𝑘𝐵)))
2614, 25mpan9 507 . . . . . . . . . 10 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → (𝑚 / 𝑘𝐵 ∈ ℝ ∧ 0 ≤ 𝑚 / 𝑘𝐵))
2726simpld 495 . . . . . . . . 9 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐵 ∈ ℝ)
2827recnd 11238 . . . . . . . 8 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐵 ∈ ℂ)
29 sumsns 15692 . . . . . . . 8 ((𝑚𝐴𝑚 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑚}𝐵 = 𝑚 / 𝑘𝐵)
3011, 28, 29syl2anc 584 . . . . . . 7 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → Σ𝑘 ∈ {𝑚}𝐵 = 𝑚 / 𝑘𝐵)
31 simplr 767 . . . . . . 7 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → Σ𝑘𝐴 𝐵 = 0)
3210, 30, 313brtr3d 5178 . . . . . 6 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐵 ≤ 0)
3326simprd 496 . . . . . 6 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → 0 ≤ 𝑚 / 𝑘𝐵)
34 0re 11212 . . . . . . 7 0 ∈ ℝ
35 letri3 11295 . . . . . . 7 ((𝑚 / 𝑘𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑚 / 𝑘𝐵 = 0 ↔ (𝑚 / 𝑘𝐵 ≤ 0 ∧ 0 ≤ 𝑚 / 𝑘𝐵)))
3627, 34, 35sylancl 586 . . . . . 6 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → (𝑚 / 𝑘𝐵 = 0 ↔ (𝑚 / 𝑘𝐵 ≤ 0 ∧ 0 ≤ 𝑚 / 𝑘𝐵)))
3732, 33, 36mpbir2and 711 . . . . 5 (((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐵 = 0)
3837ralrimiva 3146 . . . 4 ((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) → ∀𝑚𝐴 𝑚 / 𝑘𝐵 = 0)
39 nfv 1917 . . . . 5 𝑚 𝐵 = 0
4015nfeq1 2918 . . . . 5 𝑘𝑚 / 𝑘𝐵 = 0
4121eqeq1d 2734 . . . . 5 (𝑘 = 𝑚 → (𝐵 = 0 ↔ 𝑚 / 𝑘𝐵 = 0))
4239, 40, 41cbvralw 3303 . . . 4 (∀𝑘𝐴 𝐵 = 0 ↔ ∀𝑚𝐴 𝑚 / 𝑘𝐵 = 0)
4338, 42sylibr 233 . . 3 ((𝜑 ∧ Σ𝑘𝐴 𝐵 = 0) → ∀𝑘𝐴 𝐵 = 0)
4443ex 413 . 2 (𝜑 → (Σ𝑘𝐴 𝐵 = 0 → ∀𝑘𝐴 𝐵 = 0))
45 sumz 15664 . . . . 5 ((𝐴 ⊆ (ℤ‘0) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
4645olcs 874 . . . 4 (𝐴 ∈ Fin → Σ𝑘𝐴 0 = 0)
47 sumeq2 15636 . . . . 5 (∀𝑘𝐴 𝐵 = 0 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 0)
4847eqeq1d 2734 . . . 4 (∀𝑘𝐴 𝐵 = 0 → (Σ𝑘𝐴 𝐵 = 0 ↔ Σ𝑘𝐴 0 = 0))
4946, 48syl5ibrcom 246 . . 3 (𝐴 ∈ Fin → (∀𝑘𝐴 𝐵 = 0 → Σ𝑘𝐴 𝐵 = 0))
501, 49syl 17 . 2 (𝜑 → (∀𝑘𝐴 𝐵 = 0 → Σ𝑘𝐴 𝐵 = 0))
5144, 50impbid 211 1 (𝜑 → (Σ𝑘𝐴 𝐵 = 0 ↔ ∀𝑘𝐴 𝐵 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  csb 3892  wss 3947  {csn 4627   class class class wbr 5147  cfv 6540  Fincfn 8935  cc 11104  cr 11105  0cc0 11106  cle 11245  cuz 12818  Σcsu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-ico 13326  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629
This theorem is referenced by:  ramcl  16958  rrxcph  24900  rrxmet  24916  jensen  26482  eqeelen  28151  axcgrid  28163  rrnmet  36685
  Copyright terms: Public domain W3C validator