Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ontrci | Structured version Visualization version GIF version |
Description: An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
ontrci | ⊢ Tr 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . . 3 ⊢ 𝐴 ∈ On | |
2 | 1 | onordi 6356 | . 2 ⊢ Ord 𝐴 |
3 | ordtr 6265 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ Tr 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Tr wtr 5187 Ord word 6250 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-tr 5188 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 |
This theorem is referenced by: onunisuci 6365 hfuni 34413 |
Copyright terms: Public domain | W3C validator |