![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ontrci | Structured version Visualization version GIF version |
Description: An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
ontrci | ⊢ Tr 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . . 3 ⊢ 𝐴 ∈ On | |
2 | 1 | onordi 6127 | . 2 ⊢ Ord 𝐴 |
3 | ordtr 6037 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ Tr 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2048 Tr wtr 5024 Ord word 6022 Oncon0 6023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-in 3832 df-ss 3839 df-uni 4707 df-tr 5025 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-ord 6026 df-on 6027 |
This theorem is referenced by: onunisuci 6136 hfuni 33106 |
Copyright terms: Public domain | W3C validator |