Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onunisuci | Structured version Visualization version GIF version |
Description: An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onunisuci | ⊢ ∪ suc 𝐴 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . . 3 ⊢ 𝐴 ∈ On | |
2 | 1 | ontrci 6276 | . 2 ⊢ Tr 𝐴 |
3 | 1 | elexi 3430 | . . 3 ⊢ 𝐴 ∈ V |
4 | 3 | unisuc 6246 | . 2 ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) |
5 | 2, 4 | mpbi 233 | 1 ⊢ ∪ suc 𝐴 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2112 ∪ cuni 4799 Tr wtr 5139 Oncon0 6170 suc csuc 6172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-ral 3076 df-v 3412 df-un 3864 df-in 3866 df-ss 3876 df-sn 4524 df-pr 4526 df-uni 4800 df-tr 5140 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-ord 6173 df-on 6174 df-suc 6176 |
This theorem is referenced by: rankuni 9318 onsucconni 34168 onsucsuccmpi 34174 finxp1o 35082 |
Copyright terms: Public domain | W3C validator |