MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onunisuci Structured version   Visualization version   GIF version

Theorem onunisuci 6422
Description: An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
onunisuci suc 𝐴 = 𝐴

Proof of Theorem onunisuci
StepHypRef Expression
1 on.1 . 2 𝐴 ∈ On
2 onunisuc 6413 . 2 (𝐴 ∈ On → suc 𝐴 = 𝐴)
31, 2ax-mp 5 1 suc 𝐴 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111   cuni 4854  Oncon0 6301  suc csuc 6303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-v 3438  df-un 3902  df-ss 3914  df-sn 4572  df-pr 4574  df-uni 4855  df-tr 5194  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-ord 6304  df-on 6305  df-suc 6307
This theorem is referenced by:  rankuni  9751  onsucconni  36471  onsucsuccmpi  36477  finxp1o  37426
  Copyright terms: Public domain W3C validator