![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onunisuci | Structured version Visualization version GIF version |
Description: An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onunisuci | ⊢ ∪ suc 𝐴 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
2 | onunisuc 6473 | . 2 ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ suc 𝐴 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ∪ cuni 4903 Oncon0 6363 suc csuc 6365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-v 3471 df-un 3949 df-in 3951 df-ss 3961 df-sn 4625 df-pr 4627 df-uni 4904 df-tr 5260 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-ord 6366 df-on 6367 df-suc 6369 |
This theorem is referenced by: rankuni 9878 onsucconni 35857 onsucsuccmpi 35863 finxp1o 36807 |
Copyright terms: Public domain | W3C validator |