| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onunisuci | Structured version Visualization version GIF version | ||
| Description: An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.) |
| Ref | Expression |
|---|---|
| on.1 | ⊢ 𝐴 ∈ On |
| Ref | Expression |
|---|---|
| onunisuci | ⊢ ∪ suc 𝐴 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
| 2 | onunisuc 6413 | . 2 ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ suc 𝐴 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∪ cuni 4854 Oncon0 6301 suc csuc 6303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-un 3902 df-ss 3914 df-sn 4572 df-pr 4574 df-uni 4855 df-tr 5194 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-ord 6304 df-on 6305 df-suc 6307 |
| This theorem is referenced by: rankuni 9751 onsucconni 36471 onsucsuccmpi 36477 finxp1o 37426 |
| Copyright terms: Public domain | W3C validator |