MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onunisuci Structured version   Visualization version   GIF version

Theorem onunisuci 6515
Description: An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
onunisuci suc 𝐴 = 𝐴

Proof of Theorem onunisuci
StepHypRef Expression
1 on.1 . 2 𝐴 ∈ On
2 onunisuc 6505 . 2 (𝐴 ∈ On → suc 𝐴 = 𝐴)
31, 2ax-mp 5 1 suc 𝐴 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108   cuni 4931  Oncon0 6395  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-v 3490  df-un 3981  df-ss 3993  df-sn 4649  df-pr 4651  df-uni 4932  df-tr 5284  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-suc 6401
This theorem is referenced by:  rankuni  9932  onsucconni  36403  onsucsuccmpi  36409  finxp1o  37358
  Copyright terms: Public domain W3C validator