| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onunisuci | Structured version Visualization version GIF version | ||
| Description: An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.) |
| Ref | Expression |
|---|---|
| on.1 | ⊢ 𝐴 ∈ On |
| Ref | Expression |
|---|---|
| onunisuci | ⊢ ∪ suc 𝐴 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
| 2 | onunisuc 6426 | . 2 ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ suc 𝐴 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∪ cuni 4860 Oncon0 6314 suc csuc 6316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-v 3439 df-un 3903 df-ss 3915 df-sn 4578 df-pr 4580 df-uni 4861 df-tr 5203 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-ord 6317 df-on 6318 df-suc 6320 |
| This theorem is referenced by: rankuni 9767 onsucconni 36553 onsucsuccmpi 36559 finxp1o 37509 |
| Copyright terms: Public domain | W3C validator |