MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onunisuci Structured version   Visualization version   GIF version

Theorem onunisuci 6432
Description: An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
onunisuci suc 𝐴 = 𝐴

Proof of Theorem onunisuci
StepHypRef Expression
1 on.1 . 2 𝐴 ∈ On
2 onunisuc 6423 . 2 (𝐴 ∈ On → suc 𝐴 = 𝐴)
31, 2ax-mp 5 1 suc 𝐴 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109   cuni 4861  Oncon0 6311  suc csuc 6313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-v 3440  df-un 3910  df-ss 3922  df-sn 4580  df-pr 4582  df-uni 4862  df-tr 5203  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-ord 6314  df-on 6315  df-suc 6317
This theorem is referenced by:  rankuni  9778  onsucconni  36430  onsucsuccmpi  36436  finxp1o  37385
  Copyright terms: Public domain W3C validator