Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onunisuci | Structured version Visualization version GIF version |
Description: An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onunisuci | ⊢ ∪ suc 𝐴 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . . 3 ⊢ 𝐴 ∈ On | |
2 | 1 | ontrci 6372 | . 2 ⊢ Tr 𝐴 |
3 | 1 | elexi 3451 | . . 3 ⊢ 𝐴 ∈ V |
4 | 3 | unisuc 6342 | . 2 ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) |
5 | 2, 4 | mpbi 229 | 1 ⊢ ∪ suc 𝐴 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ∪ cuni 4839 Tr wtr 5191 Oncon0 6266 suc csuc 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-sn 4562 df-pr 4564 df-uni 4840 df-tr 5192 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-suc 6272 |
This theorem is referenced by: rankuni 9621 onsucconni 34626 onsucsuccmpi 34632 finxp1o 35563 |
Copyright terms: Public domain | W3C validator |