MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onunisuci Structured version   Visualization version   GIF version

Theorem onunisuci 6435
Description: An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
onunisuci suc 𝐴 = 𝐴

Proof of Theorem onunisuci
StepHypRef Expression
1 on.1 . 2 𝐴 ∈ On
2 onunisuc 6426 . 2 (𝐴 ∈ On → suc 𝐴 = 𝐴)
31, 2ax-mp 5 1 suc 𝐴 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113   cuni 4860  Oncon0 6314  suc csuc 6316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-v 3439  df-un 3903  df-ss 3915  df-sn 4578  df-pr 4580  df-uni 4861  df-tr 5203  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-ord 6317  df-on 6318  df-suc 6320
This theorem is referenced by:  rankuni  9767  onsucconni  36553  onsucsuccmpi  36559  finxp1o  37509
  Copyright terms: Public domain W3C validator