MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnotovb Structured version   Visualization version   GIF version

Theorem fnotovb 7305
Description: Equivalence of operation value and ordered triple membership, analogous to fnopfvb 6805. (Contributed by NM, 17-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) (Proof shortened by BJ, 15-Feb-2022.)
Assertion
Ref Expression
fnotovb ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → ((𝐶𝐹𝐷) = 𝑅 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹))

Proof of Theorem fnotovb
StepHypRef Expression
1 fnbrovb 7304 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶𝐴𝐷𝐵)) → ((𝐶𝐹𝐷) = 𝑅 ↔ ⟨𝐶, 𝐷𝐹𝑅))
2 df-br 5071 . . . 4 (⟨𝐶, 𝐷𝐹𝑅 ↔ ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹)
32a1i 11 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶𝐴𝐷𝐵)) → (⟨𝐶, 𝐷𝐹𝑅 ↔ ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹))
4 df-ot 4567 . . . . . 6 𝐶, 𝐷, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑅
54eqcomi 2747 . . . . 5 ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ = ⟨𝐶, 𝐷, 𝑅
65eleq1i 2829 . . . 4 (⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹)
76a1i 11 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶𝐴𝐷𝐵)) → (⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹))
81, 3, 73bitrd 304 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶𝐴𝐷𝐵)) → ((𝐶𝐹𝐷) = 𝑅 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹))
983impb 1113 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → ((𝐶𝐹𝐷) = 𝑅 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  cop 4564  cotp 4566   class class class wbr 5070   × cxp 5578   Fn wfn 6413  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-ot 4567  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-ov 7258
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator