MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnotovb Structured version   Visualization version   GIF version

Theorem fnotovb 7189
Description: Equivalence of operation value and ordered triple membership, analogous to fnopfvb 6698. (Contributed by NM, 17-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) (Proof shortened by BJ, 15-Feb-2022.)
Assertion
Ref Expression
fnotovb ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → ((𝐶𝐹𝐷) = 𝑅 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹))

Proof of Theorem fnotovb
StepHypRef Expression
1 fnbrovb 7188 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶𝐴𝐷𝐵)) → ((𝐶𝐹𝐷) = 𝑅 ↔ ⟨𝐶, 𝐷𝐹𝑅))
2 df-br 5034 . . . 4 (⟨𝐶, 𝐷𝐹𝑅 ↔ ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹)
32a1i 11 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶𝐴𝐷𝐵)) → (⟨𝐶, 𝐷𝐹𝑅 ↔ ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹))
4 df-ot 4537 . . . . . 6 𝐶, 𝐷, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑅
54eqcomi 2810 . . . . 5 ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ = ⟨𝐶, 𝐷, 𝑅
65eleq1i 2883 . . . 4 (⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹)
76a1i 11 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶𝐴𝐷𝐵)) → (⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹))
81, 3, 73bitrd 308 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶𝐴𝐷𝐵)) → ((𝐶𝐹𝐷) = 𝑅 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹))
983impb 1112 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → ((𝐶𝐹𝐷) = 𝑅 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  cop 4534  cotp 4536   class class class wbr 5033   × cxp 5521   Fn wfn 6323  (class class class)co 7139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-ot 4537  df-uni 4804  df-br 5034  df-opab 5096  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-iota 6287  df-fun 6330  df-fn 6331  df-fv 6336  df-ov 7142
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator