![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnotovb | Structured version Visualization version GIF version |
Description: Equivalence of operation value and ordered triple membership, analogous to fnopfvb 6961. (Contributed by NM, 17-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) (Proof shortened by BJ, 15-Feb-2022.) |
Ref | Expression |
---|---|
fnotovb | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐶𝐹𝐷) = 𝑅 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnbrovb 7482 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → ((𝐶𝐹𝐷) = 𝑅 ↔ 〈𝐶, 𝐷〉𝐹𝑅)) | |
2 | df-br 5149 | . . . 4 ⊢ (〈𝐶, 𝐷〉𝐹𝑅 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹) | |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → (〈𝐶, 𝐷〉𝐹𝑅 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹)) |
4 | df-ot 4640 | . . . . . 6 ⊢ 〈𝐶, 𝐷, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑅〉 | |
5 | 4 | eqcomi 2744 | . . . . 5 ⊢ 〈〈𝐶, 𝐷〉, 𝑅〉 = 〈𝐶, 𝐷, 𝑅〉 |
6 | 5 | eleq1i 2830 | . . . 4 ⊢ (〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹) |
7 | 6 | a1i 11 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → (〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹)) |
8 | 1, 3, 7 | 3bitrd 305 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → ((𝐶𝐹𝐷) = 𝑅 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹)) |
9 | 8 | 3impb 1114 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐶𝐹𝐷) = 𝑅 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 〈cop 4637 〈cotp 4639 class class class wbr 5148 × cxp 5687 Fn wfn 6558 (class class class)co 7431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-ot 4640 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 df-ov 7434 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |