![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnotovb | Structured version Visualization version GIF version |
Description: Equivalence of operation value and ordered triple membership, analogous to fnopfvb 6974. (Contributed by NM, 17-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) (Proof shortened by BJ, 15-Feb-2022.) |
Ref | Expression |
---|---|
fnotovb | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐶𝐹𝐷) = 𝑅 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnbrovb 7499 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → ((𝐶𝐹𝐷) = 𝑅 ↔ 〈𝐶, 𝐷〉𝐹𝑅)) | |
2 | df-br 5167 | . . . 4 ⊢ (〈𝐶, 𝐷〉𝐹𝑅 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹) | |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → (〈𝐶, 𝐷〉𝐹𝑅 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹)) |
4 | df-ot 4657 | . . . . . 6 ⊢ 〈𝐶, 𝐷, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑅〉 | |
5 | 4 | eqcomi 2749 | . . . . 5 ⊢ 〈〈𝐶, 𝐷〉, 𝑅〉 = 〈𝐶, 𝐷, 𝑅〉 |
6 | 5 | eleq1i 2835 | . . . 4 ⊢ (〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹) |
7 | 6 | a1i 11 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → (〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹)) |
8 | 1, 3, 7 | 3bitrd 305 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → ((𝐶𝐹𝐷) = 𝑅 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹)) |
9 | 8 | 3impb 1115 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐶𝐹𝐷) = 𝑅 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 〈cop 4654 〈cotp 4656 class class class wbr 5166 × cxp 5698 Fn wfn 6568 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-ot 4657 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 df-ov 7451 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |