Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opabresex0d | Structured version Visualization version GIF version |
Description: A collection of ordered pairs, the class of all possible second components being a set, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 1-Jan-2021.) |
Ref | Expression |
---|---|
opabresex0d.x | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) |
opabresex0d.t | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝜃) |
opabresex0d.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝜃} ∈ 𝑉) |
opabresex0d.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
opabresex0d | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabresex0d.x | . . . . 5 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) | |
2 | opabresex0d.t | . . . . 5 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝜃) | |
3 | 1, 2 | jca 512 | . . . 4 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → (𝑥 ∈ 𝐶 ∧ 𝜃)) |
4 | 3 | ex 413 | . . 3 ⊢ (𝜑 → (𝑥𝑅𝑦 → (𝑥 ∈ 𝐶 ∧ 𝜃))) |
5 | 4 | alrimivv 1935 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦(𝑥𝑅𝑦 → (𝑥 ∈ 𝐶 ∧ 𝜃))) |
6 | opabresex0d.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
7 | opabresex0d.y | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝜃} ∈ 𝑉) | |
8 | 7 | elexd 3451 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝜃} ∈ V) |
9 | 6, 8 | opabex3d 7801 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜃)} ∈ V) |
10 | opabbrex 7322 | . 2 ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → (𝑥 ∈ 𝐶 ∧ 𝜃)) ∧ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜃)} ∈ V) → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) | |
11 | 5, 9, 10 | syl2anc 584 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1540 ∈ wcel 2110 {cab 2717 Vcvv 3431 class class class wbr 5079 {copab 5141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 |
This theorem is referenced by: opabbrfex0d 44746 opabresexd 44747 |
Copyright terms: Public domain | W3C validator |