Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opabresex0d Structured version   Visualization version   GIF version

Theorem opabresex0d 47200
Description: A collection of ordered pairs, the class of all possible second components being a set, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 1-Jan-2021.)
Hypotheses
Ref Expression
opabresex0d.x ((𝜑𝑥𝑅𝑦) → 𝑥𝐶)
opabresex0d.t ((𝜑𝑥𝑅𝑦) → 𝜃)
opabresex0d.y ((𝜑𝑥𝐶) → {𝑦𝜃} ∈ 𝑉)
opabresex0d.c (𝜑𝐶𝑊)
Assertion
Ref Expression
opabresex0d (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝜓)} ∈ V)
Distinct variable groups:   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜃(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem opabresex0d
StepHypRef Expression
1 opabresex0d.x . . . . 5 ((𝜑𝑥𝑅𝑦) → 𝑥𝐶)
2 opabresex0d.t . . . . 5 ((𝜑𝑥𝑅𝑦) → 𝜃)
31, 2jca 511 . . . 4 ((𝜑𝑥𝑅𝑦) → (𝑥𝐶𝜃))
43ex 412 . . 3 (𝜑 → (𝑥𝑅𝑦 → (𝑥𝐶𝜃)))
54alrimivv 1927 . 2 (𝜑 → ∀𝑥𝑦(𝑥𝑅𝑦 → (𝑥𝐶𝜃)))
6 opabresex0d.c . . 3 (𝜑𝐶𝑊)
7 opabresex0d.y . . . 4 ((𝜑𝑥𝐶) → {𝑦𝜃} ∈ 𝑉)
87elexd 3512 . . 3 ((𝜑𝑥𝐶) → {𝑦𝜃} ∈ V)
96, 8opabex3d 8006 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜃)} ∈ V)
10 opabbrex 7501 . 2 ((∀𝑥𝑦(𝑥𝑅𝑦 → (𝑥𝐶𝜃)) ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜃)} ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝜓)} ∈ V)
115, 9, 10syl2anc 583 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝜓)} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535  wcel 2108  {cab 2717  Vcvv 3488   class class class wbr 5166  {copab 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-opab 5229  df-xp 5706  df-rel 5707
This theorem is referenced by:  opabbrfex0d  47201  opabresexd  47202
  Copyright terms: Public domain W3C validator