Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opabresex0d Structured version   Visualization version   GIF version

Theorem opabresex0d 46803
Description: A collection of ordered pairs, the class of all possible second components being a set, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 1-Jan-2021.)
Hypotheses
Ref Expression
opabresex0d.x ((𝜑𝑥𝑅𝑦) → 𝑥𝐶)
opabresex0d.t ((𝜑𝑥𝑅𝑦) → 𝜃)
opabresex0d.y ((𝜑𝑥𝐶) → {𝑦𝜃} ∈ 𝑉)
opabresex0d.c (𝜑𝐶𝑊)
Assertion
Ref Expression
opabresex0d (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝜓)} ∈ V)
Distinct variable groups:   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜃(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem opabresex0d
StepHypRef Expression
1 opabresex0d.x . . . . 5 ((𝜑𝑥𝑅𝑦) → 𝑥𝐶)
2 opabresex0d.t . . . . 5 ((𝜑𝑥𝑅𝑦) → 𝜃)
31, 2jca 510 . . . 4 ((𝜑𝑥𝑅𝑦) → (𝑥𝐶𝜃))
43ex 411 . . 3 (𝜑 → (𝑥𝑅𝑦 → (𝑥𝐶𝜃)))
54alrimivv 1923 . 2 (𝜑 → ∀𝑥𝑦(𝑥𝑅𝑦 → (𝑥𝐶𝜃)))
6 opabresex0d.c . . 3 (𝜑𝐶𝑊)
7 opabresex0d.y . . . 4 ((𝜑𝑥𝐶) → {𝑦𝜃} ∈ 𝑉)
87elexd 3483 . . 3 ((𝜑𝑥𝐶) → {𝑦𝜃} ∈ V)
96, 8opabex3d 7970 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜃)} ∈ V)
10 opabbrex 7471 . 2 ((∀𝑥𝑦(𝑥𝑅𝑦 → (𝑥𝐶𝜃)) ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜃)} ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝜓)} ∈ V)
115, 9, 10syl2anc 582 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝜓)} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wal 1531  wcel 2098  {cab 2702  Vcvv 3461   class class class wbr 5149  {copab 5211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-opab 5212  df-xp 5684  df-rel 5685
This theorem is referenced by:  opabbrfex0d  46804  opabresexd  46805
  Copyright terms: Public domain W3C validator