| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opabresex0d | Structured version Visualization version GIF version | ||
| Description: A collection of ordered pairs, the class of all possible second components being a set, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 1-Jan-2021.) |
| Ref | Expression |
|---|---|
| opabresex0d.x | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) |
| opabresex0d.t | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝜃) |
| opabresex0d.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝜃} ∈ 𝑉) |
| opabresex0d.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| opabresex0d | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabresex0d.x | . . . . 5 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) | |
| 2 | opabresex0d.t | . . . . 5 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝜃) | |
| 3 | 1, 2 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → (𝑥 ∈ 𝐶 ∧ 𝜃)) |
| 4 | 3 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥𝑅𝑦 → (𝑥 ∈ 𝐶 ∧ 𝜃))) |
| 5 | 4 | alrimivv 1927 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦(𝑥𝑅𝑦 → (𝑥 ∈ 𝐶 ∧ 𝜃))) |
| 6 | opabresex0d.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 7 | opabresex0d.y | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝜃} ∈ 𝑉) | |
| 8 | 7 | elexd 3487 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝜃} ∈ V) |
| 9 | 6, 8 | opabex3d 7971 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜃)} ∈ V) |
| 10 | opabbrex 7465 | . 2 ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → (𝑥 ∈ 𝐶 ∧ 𝜃)) ∧ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜃)} ∈ V) → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) | |
| 11 | 5, 9, 10 | syl2anc 584 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∈ wcel 2107 {cab 2712 Vcvv 3463 class class class wbr 5123 {copab 5185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-opab 5186 df-xp 5671 df-rel 5672 |
| This theorem is referenced by: opabbrfex0d 47232 opabresexd 47233 |
| Copyright terms: Public domain | W3C validator |