Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opabresex0d | Structured version Visualization version GIF version |
Description: A collection of ordered pairs, the class of all possible second components being a set, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 1-Jan-2021.) |
Ref | Expression |
---|---|
opabresex0d.x | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) |
opabresex0d.t | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝜃) |
opabresex0d.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝜃} ∈ 𝑉) |
opabresex0d.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
opabresex0d | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabresex0d.x | . . . . 5 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) | |
2 | opabresex0d.t | . . . . 5 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝜃) | |
3 | 1, 2 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → (𝑥 ∈ 𝐶 ∧ 𝜃)) |
4 | 3 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥𝑅𝑦 → (𝑥 ∈ 𝐶 ∧ 𝜃))) |
5 | 4 | alrimivv 1932 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦(𝑥𝑅𝑦 → (𝑥 ∈ 𝐶 ∧ 𝜃))) |
6 | opabresex0d.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
7 | opabresex0d.y | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝜃} ∈ 𝑉) | |
8 | 7 | elexd 3442 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝜃} ∈ V) |
9 | 6, 8 | opabex3d 7781 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜃)} ∈ V) |
10 | opabbrex 7306 | . 2 ⊢ ((∀𝑥∀𝑦(𝑥𝑅𝑦 → (𝑥 ∈ 𝐶 ∧ 𝜃)) ∧ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜃)} ∈ V) → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) | |
11 | 5, 9, 10 | syl2anc 583 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∈ wcel 2108 {cab 2715 Vcvv 3422 class class class wbr 5070 {copab 5132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: opabbrfex0d 44665 opabresexd 44666 |
Copyright terms: Public domain | W3C validator |