| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sprmpod | Structured version Visualization version GIF version | ||
| Description: The extension of a binary relation which is the value of an operation given in maps-to notation. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 20-Jun-2019.) |
| Ref | Expression |
|---|---|
| sprmpod.1 | ⊢ 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)}) |
| sprmpod.2 | ⊢ ((𝜑 ∧ 𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜒 ↔ 𝜓)) |
| sprmpod.3 | ⊢ (𝜑 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) |
| sprmpod.4 | ⊢ (𝜑 → ∀𝑥∀𝑦(𝑥(𝑉𝑅𝐸)𝑦 → 𝜃)) |
| sprmpod.5 | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜃} ∈ V) |
| Ref | Expression |
|---|---|
| sprmpod | ⊢ (𝜑 → (𝑉𝑀𝐸) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sprmpod.1 | . . 3 ⊢ 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)}) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)})) |
| 3 | oveq12 7355 | . . . . . 6 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑣𝑅𝑒) = (𝑉𝑅𝐸)) | |
| 4 | 3 | breqd 5102 | . . . . 5 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑥(𝑣𝑅𝑒)𝑦 ↔ 𝑥(𝑉𝑅𝐸)𝑦)) |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → (𝑥(𝑣𝑅𝑒)𝑦 ↔ 𝑥(𝑉𝑅𝐸)𝑦)) |
| 6 | sprmpod.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜒 ↔ 𝜓)) | |
| 7 | 6 | 3expb 1120 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → (𝜒 ↔ 𝜓)) |
| 8 | 5, 7 | anbi12d 632 | . . 3 ⊢ ((𝜑 ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → ((𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒) ↔ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓))) |
| 9 | 8 | opabbidv 5157 | . 2 ⊢ ((𝜑 ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → {〈𝑥, 𝑦〉 ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)} = {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)}) |
| 10 | sprmpod.3 | . . 3 ⊢ (𝜑 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) | |
| 11 | 10 | simpld 494 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
| 12 | 10 | simprd 495 | . 2 ⊢ (𝜑 → 𝐸 ∈ V) |
| 13 | sprmpod.4 | . . 3 ⊢ (𝜑 → ∀𝑥∀𝑦(𝑥(𝑉𝑅𝐸)𝑦 → 𝜃)) | |
| 14 | sprmpod.5 | . . 3 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜃} ∈ V) | |
| 15 | opabbrex 7399 | . . 3 ⊢ ((∀𝑥∀𝑦(𝑥(𝑉𝑅𝐸)𝑦 → 𝜃) ∧ {〈𝑥, 𝑦〉 ∣ 𝜃} ∈ V) → {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)} ∈ V) | |
| 16 | 13, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)} ∈ V) |
| 17 | 2, 9, 11, 12, 16 | ovmpod 7498 | 1 ⊢ (𝜑 → (𝑉𝑀𝐸) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1539 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5091 {copab 5153 (class class class)co 7346 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |