MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sprmpod Structured version   Visualization version   GIF version

Theorem sprmpod 7890
Description: The extension of a binary relation which is the value of an operation given in maps-to notation. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 20-Jun-2019.)
Hypotheses
Ref Expression
sprmpod.1 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑣𝑅𝑒)𝑦𝜒)})
sprmpod.2 ((𝜑𝑣 = 𝑉𝑒 = 𝐸) → (𝜒𝜓))
sprmpod.3 (𝜑 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
sprmpod.4 (𝜑 → ∀𝑥𝑦(𝑥(𝑉𝑅𝐸)𝑦𝜃))
sprmpod.5 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜃} ∈ V)
Assertion
Ref Expression
sprmpod (𝜑 → (𝑉𝑀𝐸) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑉𝑅𝐸)𝑦𝜓)})
Distinct variable groups:   𝑒,𝐸,𝑣,𝑥,𝑦   𝑅,𝑒,𝑣   𝑒,𝑉,𝑣,𝑥,𝑦   𝜑,𝑒,𝑣,𝑥,𝑦   𝜓,𝑒,𝑣
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦,𝑣,𝑒)   𝜃(𝑥,𝑦,𝑣,𝑒)   𝑅(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑣,𝑒)

Proof of Theorem sprmpod
StepHypRef Expression
1 sprmpod.1 . . 3 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑣𝑅𝑒)𝑦𝜒)})
21a1i 11 . 2 (𝜑𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑣𝑅𝑒)𝑦𝜒)}))
3 oveq12 7165 . . . . . 6 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑣𝑅𝑒) = (𝑉𝑅𝐸))
43breqd 5077 . . . . 5 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑥(𝑣𝑅𝑒)𝑦𝑥(𝑉𝑅𝐸)𝑦))
54adantl 484 . . . 4 ((𝜑 ∧ (𝑣 = 𝑉𝑒 = 𝐸)) → (𝑥(𝑣𝑅𝑒)𝑦𝑥(𝑉𝑅𝐸)𝑦))
6 sprmpod.2 . . . . 5 ((𝜑𝑣 = 𝑉𝑒 = 𝐸) → (𝜒𝜓))
763expb 1116 . . . 4 ((𝜑 ∧ (𝑣 = 𝑉𝑒 = 𝐸)) → (𝜒𝜓))
85, 7anbi12d 632 . . 3 ((𝜑 ∧ (𝑣 = 𝑉𝑒 = 𝐸)) → ((𝑥(𝑣𝑅𝑒)𝑦𝜒) ↔ (𝑥(𝑉𝑅𝐸)𝑦𝜓)))
98opabbidv 5132 . 2 ((𝜑 ∧ (𝑣 = 𝑉𝑒 = 𝐸)) → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑣𝑅𝑒)𝑦𝜒)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑉𝑅𝐸)𝑦𝜓)})
10 sprmpod.3 . . 3 (𝜑 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
1110simpld 497 . 2 (𝜑𝑉 ∈ V)
1210simprd 498 . 2 (𝜑𝐸 ∈ V)
13 sprmpod.4 . . 3 (𝜑 → ∀𝑥𝑦(𝑥(𝑉𝑅𝐸)𝑦𝜃))
14 sprmpod.5 . . 3 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜃} ∈ V)
15 opabbrex 7207 . . 3 ((∀𝑥𝑦(𝑥(𝑉𝑅𝐸)𝑦𝜃) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝜃} ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑉𝑅𝐸)𝑦𝜓)} ∈ V)
1613, 14, 15syl2anc 586 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑉𝑅𝐸)𝑦𝜓)} ∈ V)
172, 9, 11, 12, 16ovmpod 7302 1 (𝜑 → (𝑉𝑀𝐸) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑉𝑅𝐸)𝑦𝜓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1535   = wceq 1537  wcel 2114  Vcvv 3494   class class class wbr 5066  {copab 5128  (class class class)co 7156  cmpo 7158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator