![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sprmpod | Structured version Visualization version GIF version |
Description: The extension of a binary relation which is the value of an operation given in maps-to notation. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 20-Jun-2019.) |
Ref | Expression |
---|---|
sprmpod.1 | ⊢ 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)}) |
sprmpod.2 | ⊢ ((𝜑 ∧ 𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜒 ↔ 𝜓)) |
sprmpod.3 | ⊢ (𝜑 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) |
sprmpod.4 | ⊢ (𝜑 → ∀𝑥∀𝑦(𝑥(𝑉𝑅𝐸)𝑦 → 𝜃)) |
sprmpod.5 | ⊢ (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜃} ∈ V) |
Ref | Expression |
---|---|
sprmpod | ⊢ (𝜑 → (𝑉𝑀𝐸) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sprmpod.1 | . . 3 ⊢ 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)})) |
3 | oveq12 7370 | . . . . . 6 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑣𝑅𝑒) = (𝑉𝑅𝐸)) | |
4 | 3 | breqd 5120 | . . . . 5 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑥(𝑣𝑅𝑒)𝑦 ↔ 𝑥(𝑉𝑅𝐸)𝑦)) |
5 | 4 | adantl 483 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → (𝑥(𝑣𝑅𝑒)𝑦 ↔ 𝑥(𝑉𝑅𝐸)𝑦)) |
6 | sprmpod.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜒 ↔ 𝜓)) | |
7 | 6 | 3expb 1121 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → (𝜒 ↔ 𝜓)) |
8 | 5, 7 | anbi12d 632 | . . 3 ⊢ ((𝜑 ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → ((𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒) ↔ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓))) |
9 | 8 | opabbidv 5175 | . 2 ⊢ ((𝜑 ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)}) |
10 | sprmpod.3 | . . 3 ⊢ (𝜑 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) | |
11 | 10 | simpld 496 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
12 | 10 | simprd 497 | . 2 ⊢ (𝜑 → 𝐸 ∈ V) |
13 | sprmpod.4 | . . 3 ⊢ (𝜑 → ∀𝑥∀𝑦(𝑥(𝑉𝑅𝐸)𝑦 → 𝜃)) | |
14 | sprmpod.5 | . . 3 ⊢ (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜃} ∈ V) | |
15 | opabbrex 7412 | . . 3 ⊢ ((∀𝑥∀𝑦(𝑥(𝑉𝑅𝐸)𝑦 → 𝜃) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝜃} ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)} ∈ V) | |
16 | 13, 14, 15 | syl2anc 585 | . 2 ⊢ (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)} ∈ V) |
17 | 2, 9, 11, 12, 16 | ovmpod 7511 | 1 ⊢ (𝜑 → (𝑉𝑀𝐸) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 ∀wal 1540 = wceq 1542 ∈ wcel 2107 Vcvv 3447 class class class wbr 5109 {copab 5171 (class class class)co 7361 ∈ cmpo 7363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-sbc 3744 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-iota 6452 df-fun 6502 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |