![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sprmpod | Structured version Visualization version GIF version |
Description: The extension of a binary relation which is the value of an operation given in maps-to notation. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 20-Jun-2019.) |
Ref | Expression |
---|---|
sprmpod.1 | ⊢ 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)}) |
sprmpod.2 | ⊢ ((𝜑 ∧ 𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜒 ↔ 𝜓)) |
sprmpod.3 | ⊢ (𝜑 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) |
sprmpod.4 | ⊢ (𝜑 → ∀𝑥∀𝑦(𝑥(𝑉𝑅𝐸)𝑦 → 𝜃)) |
sprmpod.5 | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜃} ∈ V) |
Ref | Expression |
---|---|
sprmpod | ⊢ (𝜑 → (𝑉𝑀𝐸) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sprmpod.1 | . . 3 ⊢ 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)})) |
3 | oveq12 7440 | . . . . . 6 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑣𝑅𝑒) = (𝑉𝑅𝐸)) | |
4 | 3 | breqd 5159 | . . . . 5 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑥(𝑣𝑅𝑒)𝑦 ↔ 𝑥(𝑉𝑅𝐸)𝑦)) |
5 | 4 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → (𝑥(𝑣𝑅𝑒)𝑦 ↔ 𝑥(𝑉𝑅𝐸)𝑦)) |
6 | sprmpod.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜒 ↔ 𝜓)) | |
7 | 6 | 3expb 1119 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → (𝜒 ↔ 𝜓)) |
8 | 5, 7 | anbi12d 632 | . . 3 ⊢ ((𝜑 ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → ((𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒) ↔ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓))) |
9 | 8 | opabbidv 5214 | . 2 ⊢ ((𝜑 ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → {〈𝑥, 𝑦〉 ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)} = {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)}) |
10 | sprmpod.3 | . . 3 ⊢ (𝜑 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) | |
11 | 10 | simpld 494 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
12 | 10 | simprd 495 | . 2 ⊢ (𝜑 → 𝐸 ∈ V) |
13 | sprmpod.4 | . . 3 ⊢ (𝜑 → ∀𝑥∀𝑦(𝑥(𝑉𝑅𝐸)𝑦 → 𝜃)) | |
14 | sprmpod.5 | . . 3 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜃} ∈ V) | |
15 | opabbrex 7484 | . . 3 ⊢ ((∀𝑥∀𝑦(𝑥(𝑉𝑅𝐸)𝑦 → 𝜃) ∧ {〈𝑥, 𝑦〉 ∣ 𝜃} ∈ V) → {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)} ∈ V) | |
16 | 13, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)} ∈ V) |
17 | 2, 9, 11, 12, 16 | ovmpod 7585 | 1 ⊢ (𝜑 → (𝑉𝑀𝐸) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1535 = wceq 1537 ∈ wcel 2106 Vcvv 3478 class class class wbr 5148 {copab 5210 (class class class)co 7431 ∈ cmpo 7433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |