Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sprmpod | Structured version Visualization version GIF version |
Description: The extension of a binary relation which is the value of an operation given in maps-to notation. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 20-Jun-2019.) |
Ref | Expression |
---|---|
sprmpod.1 | ⊢ 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)}) |
sprmpod.2 | ⊢ ((𝜑 ∧ 𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜒 ↔ 𝜓)) |
sprmpod.3 | ⊢ (𝜑 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) |
sprmpod.4 | ⊢ (𝜑 → ∀𝑥∀𝑦(𝑥(𝑉𝑅𝐸)𝑦 → 𝜃)) |
sprmpod.5 | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜃} ∈ V) |
Ref | Expression |
---|---|
sprmpod | ⊢ (𝜑 → (𝑉𝑀𝐸) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sprmpod.1 | . . 3 ⊢ 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)})) |
3 | oveq12 7284 | . . . . . 6 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑣𝑅𝑒) = (𝑉𝑅𝐸)) | |
4 | 3 | breqd 5085 | . . . . 5 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑥(𝑣𝑅𝑒)𝑦 ↔ 𝑥(𝑉𝑅𝐸)𝑦)) |
5 | 4 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → (𝑥(𝑣𝑅𝑒)𝑦 ↔ 𝑥(𝑉𝑅𝐸)𝑦)) |
6 | sprmpod.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜒 ↔ 𝜓)) | |
7 | 6 | 3expb 1119 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → (𝜒 ↔ 𝜓)) |
8 | 5, 7 | anbi12d 631 | . . 3 ⊢ ((𝜑 ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → ((𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒) ↔ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓))) |
9 | 8 | opabbidv 5140 | . 2 ⊢ ((𝜑 ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → {〈𝑥, 𝑦〉 ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)} = {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)}) |
10 | sprmpod.3 | . . 3 ⊢ (𝜑 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) | |
11 | 10 | simpld 495 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
12 | 10 | simprd 496 | . 2 ⊢ (𝜑 → 𝐸 ∈ V) |
13 | sprmpod.4 | . . 3 ⊢ (𝜑 → ∀𝑥∀𝑦(𝑥(𝑉𝑅𝐸)𝑦 → 𝜃)) | |
14 | sprmpod.5 | . . 3 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜃} ∈ V) | |
15 | opabbrex 7326 | . . 3 ⊢ ((∀𝑥∀𝑦(𝑥(𝑉𝑅𝐸)𝑦 → 𝜃) ∧ {〈𝑥, 𝑦〉 ∣ 𝜃} ∈ V) → {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)} ∈ V) | |
16 | 13, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)} ∈ V) |
17 | 2, 9, 11, 12, 16 | ovmpod 7425 | 1 ⊢ (𝜑 → (𝑉𝑀𝐸) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∀wal 1537 = wceq 1539 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 {copab 5136 (class class class)co 7275 ∈ cmpo 7277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |