| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sprmpod | Structured version Visualization version GIF version | ||
| Description: The extension of a binary relation which is the value of an operation given in maps-to notation. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 20-Jun-2019.) |
| Ref | Expression |
|---|---|
| sprmpod.1 | ⊢ 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)}) |
| sprmpod.2 | ⊢ ((𝜑 ∧ 𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜒 ↔ 𝜓)) |
| sprmpod.3 | ⊢ (𝜑 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) |
| sprmpod.4 | ⊢ (𝜑 → ∀𝑥∀𝑦(𝑥(𝑉𝑅𝐸)𝑦 → 𝜃)) |
| sprmpod.5 | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜃} ∈ V) |
| Ref | Expression |
|---|---|
| sprmpod | ⊢ (𝜑 → (𝑉𝑀𝐸) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sprmpod.1 | . . 3 ⊢ 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)}) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)})) |
| 3 | oveq12 7423 | . . . . . 6 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑣𝑅𝑒) = (𝑉𝑅𝐸)) | |
| 4 | 3 | breqd 5136 | . . . . 5 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑥(𝑣𝑅𝑒)𝑦 ↔ 𝑥(𝑉𝑅𝐸)𝑦)) |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → (𝑥(𝑣𝑅𝑒)𝑦 ↔ 𝑥(𝑉𝑅𝐸)𝑦)) |
| 6 | sprmpod.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜒 ↔ 𝜓)) | |
| 7 | 6 | 3expb 1120 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → (𝜒 ↔ 𝜓)) |
| 8 | 5, 7 | anbi12d 632 | . . 3 ⊢ ((𝜑 ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → ((𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒) ↔ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓))) |
| 9 | 8 | opabbidv 5191 | . 2 ⊢ ((𝜑 ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → {〈𝑥, 𝑦〉 ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)} = {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)}) |
| 10 | sprmpod.3 | . . 3 ⊢ (𝜑 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) | |
| 11 | 10 | simpld 494 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
| 12 | 10 | simprd 495 | . 2 ⊢ (𝜑 → 𝐸 ∈ V) |
| 13 | sprmpod.4 | . . 3 ⊢ (𝜑 → ∀𝑥∀𝑦(𝑥(𝑉𝑅𝐸)𝑦 → 𝜃)) | |
| 14 | sprmpod.5 | . . 3 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜃} ∈ V) | |
| 15 | opabbrex 7467 | . . 3 ⊢ ((∀𝑥∀𝑦(𝑥(𝑉𝑅𝐸)𝑦 → 𝜃) ∧ {〈𝑥, 𝑦〉 ∣ 𝜃} ∈ V) → {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)} ∈ V) | |
| 16 | 13, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)} ∈ V) |
| 17 | 2, 9, 11, 12, 16 | ovmpod 7568 | 1 ⊢ (𝜑 → (𝑉𝑀𝐸) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1537 = wceq 1539 ∈ wcel 2107 Vcvv 3464 class class class wbr 5125 {copab 5187 (class class class)co 7414 ∈ cmpo 7416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6495 df-fun 6544 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |