![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkResOLD | Structured version Visualization version GIF version |
Description: Obsolete version of opabresex2 7463 as of 13-Dec-2024. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 30-Dec-2020.) (Proof shortened by AV, 15-Jan-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
wlkResOLD.1 | β’ (π(πβπΊ)π β π(WalksβπΊ)π) |
Ref | Expression |
---|---|
wlkResOLD | β’ {β¨π, πβ© β£ (π(πβπΊ)π β§ π)} β V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkResOLD.1 | . . 3 β’ (π(πβπΊ)π β π(WalksβπΊ)π) | |
2 | 1 | gen2 1796 | . 2 β’ βπβπ(π(πβπΊ)π β π(WalksβπΊ)π) |
3 | wksv 29143 | . 2 β’ {β¨π, πβ© β£ π(WalksβπΊ)π} β V | |
4 | opabbrex 7462 | . 2 β’ ((βπβπ(π(πβπΊ)π β π(WalksβπΊ)π) β§ {β¨π, πβ© β£ π(WalksβπΊ)π} β V) β {β¨π, πβ© β£ (π(πβπΊ)π β§ π)} β V) | |
5 | 2, 3, 4 | mp2an 688 | 1 β’ {β¨π, πβ© β£ (π(πβπΊ)π β§ π)} β V |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 βwal 1537 β wcel 2104 Vcvv 3472 class class class wbr 5147 {copab 5209 βcfv 6542 Walkscwlks 29120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-sn 4628 df-pr 4630 df-uni 4908 df-br 5148 df-opab 5210 df-iota 6494 df-fv 6550 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |