MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkResOLD Structured version   Visualization version   GIF version

Theorem wlkResOLD 28907
Description: Obsolete version of opabresex2 7461 as of 13-Dec-2024. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 30-Dec-2020.) (Proof shortened by AV, 15-Jan-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
wlkResOLD.1 (𝑓(π‘Šβ€˜πΊ)𝑝 β†’ 𝑓(Walksβ€˜πΊ)𝑝)
Assertion
Ref Expression
wlkResOLD {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(π‘Šβ€˜πΊ)𝑝 ∧ πœ‘)} ∈ V
Distinct variable group:   𝑓,𝐺,𝑝
Allowed substitution hints:   πœ‘(𝑓,𝑝)   π‘Š(𝑓,𝑝)

Proof of Theorem wlkResOLD
StepHypRef Expression
1 wlkResOLD.1 . . 3 (𝑓(π‘Šβ€˜πΊ)𝑝 β†’ 𝑓(Walksβ€˜πΊ)𝑝)
21gen2 1799 . 2 βˆ€π‘“βˆ€π‘(𝑓(π‘Šβ€˜πΊ)𝑝 β†’ 𝑓(Walksβ€˜πΊ)𝑝)
3 wksv 28876 . 2 {βŸ¨π‘“, π‘βŸ© ∣ 𝑓(Walksβ€˜πΊ)𝑝} ∈ V
4 opabbrex 7460 . 2 ((βˆ€π‘“βˆ€π‘(𝑓(π‘Šβ€˜πΊ)𝑝 β†’ 𝑓(Walksβ€˜πΊ)𝑝) ∧ {βŸ¨π‘“, π‘βŸ© ∣ 𝑓(Walksβ€˜πΊ)𝑝} ∈ V) β†’ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(π‘Šβ€˜πΊ)𝑝 ∧ πœ‘)} ∈ V)
52, 3, 4mp2an 691 1 {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(π‘Šβ€˜πΊ)𝑝 ∧ πœ‘)} ∈ V
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397  βˆ€wal 1540   ∈ wcel 2107  Vcvv 3475   class class class wbr 5149  {copab 5211  β€˜cfv 6544  Walkscwlks 28853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-sn 4630  df-pr 4632  df-uni 4910  df-br 5150  df-opab 5212  df-iota 6496  df-fv 6552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator