MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkResOLD Structured version   Visualization version   GIF version

Theorem wlkResOLD 28017
Description: Obsolete version of opabresex2 7327 as of 13-Dec-2024. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 30-Dec-2020.) (Proof shortened by AV, 15-Jan-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
wlkResOLD.1 (𝑓(𝑊𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
Assertion
Ref Expression
wlkResOLD {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑊𝐺)𝑝𝜑)} ∈ V
Distinct variable group:   𝑓,𝐺,𝑝
Allowed substitution hints:   𝜑(𝑓,𝑝)   𝑊(𝑓,𝑝)

Proof of Theorem wlkResOLD
StepHypRef Expression
1 wlkResOLD.1 . . 3 (𝑓(𝑊𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
21gen2 1799 . 2 𝑓𝑝(𝑓(𝑊𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
3 wksv 27986 . 2 {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V
4 opabbrex 7326 . 2 ((∀𝑓𝑝(𝑓(𝑊𝐺)𝑝𝑓(Walks‘𝐺)𝑝) ∧ {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑊𝐺)𝑝𝜑)} ∈ V)
52, 3, 4mp2an 689 1 {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑊𝐺)𝑝𝜑)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537  wcel 2106  Vcvv 3432   class class class wbr 5074  {copab 5136  cfv 6433  Walkscwlks 27963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-sn 4562  df-pr 4564  df-uni 4840  df-br 5075  df-opab 5137  df-iota 6391  df-fv 6441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator