![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkResOLD | Structured version Visualization version GIF version |
Description: Obsolete version of opabresex2 7461 as of 13-Dec-2024. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 30-Dec-2020.) (Proof shortened by AV, 15-Jan-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
wlkResOLD.1 | β’ (π(πβπΊ)π β π(WalksβπΊ)π) |
Ref | Expression |
---|---|
wlkResOLD | β’ {β¨π, πβ© β£ (π(πβπΊ)π β§ π)} β V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkResOLD.1 | . . 3 β’ (π(πβπΊ)π β π(WalksβπΊ)π) | |
2 | 1 | gen2 1799 | . 2 β’ βπβπ(π(πβπΊ)π β π(WalksβπΊ)π) |
3 | wksv 28876 | . 2 β’ {β¨π, πβ© β£ π(WalksβπΊ)π} β V | |
4 | opabbrex 7460 | . 2 β’ ((βπβπ(π(πβπΊ)π β π(WalksβπΊ)π) β§ {β¨π, πβ© β£ π(WalksβπΊ)π} β V) β {β¨π, πβ© β£ (π(πβπΊ)π β§ π)} β V) | |
5 | 2, 3, 4 | mp2an 691 | 1 β’ {β¨π, πβ© β£ (π(πβπΊ)π β§ π)} β V |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 βwal 1540 β wcel 2107 Vcvv 3475 class class class wbr 5149 {copab 5211 βcfv 6544 Walkscwlks 28853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-sn 4630 df-pr 4632 df-uni 4910 df-br 5150 df-opab 5212 df-iota 6496 df-fv 6552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |