MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkResOLD Structured version   Visualization version   GIF version

Theorem wlkResOLD 29668
Description: Obsolete version of opabresex2 7485 as of 13-Dec-2024. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 30-Dec-2020.) (Proof shortened by AV, 15-Jan-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
wlkResOLD.1 (𝑓(𝑊𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
Assertion
Ref Expression
wlkResOLD {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑊𝐺)𝑝𝜑)} ∈ V
Distinct variable group:   𝑓,𝐺,𝑝
Allowed substitution hints:   𝜑(𝑓,𝑝)   𝑊(𝑓,𝑝)

Proof of Theorem wlkResOLD
StepHypRef Expression
1 wlkResOLD.1 . . 3 (𝑓(𝑊𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
21gen2 1796 . 2 𝑓𝑝(𝑓(𝑊𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
3 wksv 29637 . 2 {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V
4 opabbrex 7484 . 2 ((∀𝑓𝑝(𝑓(𝑊𝐺)𝑝𝑓(Walks‘𝐺)𝑝) ∧ {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑊𝐺)𝑝𝜑)} ∈ V)
52, 3, 4mp2an 692 1 {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑊𝐺)𝑝𝜑)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wcel 2108  Vcvv 3480   class class class wbr 5143  {copab 5205  cfv 6561  Walkscwlks 29614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-sn 4627  df-pr 4629  df-uni 4908  df-br 5144  df-opab 5206  df-iota 6514  df-fv 6569
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator