MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkResOLD Structured version   Visualization version   GIF version

Theorem wlkResOLD 29174
Description: Obsolete version of opabresex2 7463 as of 13-Dec-2024. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 30-Dec-2020.) (Proof shortened by AV, 15-Jan-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
wlkResOLD.1 (𝑓(π‘Šβ€˜πΊ)𝑝 β†’ 𝑓(Walksβ€˜πΊ)𝑝)
Assertion
Ref Expression
wlkResOLD {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(π‘Šβ€˜πΊ)𝑝 ∧ πœ‘)} ∈ V
Distinct variable group:   𝑓,𝐺,𝑝
Allowed substitution hints:   πœ‘(𝑓,𝑝)   π‘Š(𝑓,𝑝)

Proof of Theorem wlkResOLD
StepHypRef Expression
1 wlkResOLD.1 . . 3 (𝑓(π‘Šβ€˜πΊ)𝑝 β†’ 𝑓(Walksβ€˜πΊ)𝑝)
21gen2 1796 . 2 βˆ€π‘“βˆ€π‘(𝑓(π‘Šβ€˜πΊ)𝑝 β†’ 𝑓(Walksβ€˜πΊ)𝑝)
3 wksv 29143 . 2 {βŸ¨π‘“, π‘βŸ© ∣ 𝑓(Walksβ€˜πΊ)𝑝} ∈ V
4 opabbrex 7462 . 2 ((βˆ€π‘“βˆ€π‘(𝑓(π‘Šβ€˜πΊ)𝑝 β†’ 𝑓(Walksβ€˜πΊ)𝑝) ∧ {βŸ¨π‘“, π‘βŸ© ∣ 𝑓(Walksβ€˜πΊ)𝑝} ∈ V) β†’ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(π‘Šβ€˜πΊ)𝑝 ∧ πœ‘)} ∈ V)
52, 3, 4mp2an 688 1 {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(π‘Šβ€˜πΊ)𝑝 ∧ πœ‘)} ∈ V
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394  βˆ€wal 1537   ∈ wcel 2104  Vcvv 3472   class class class wbr 5147  {copab 5209  β€˜cfv 6542  Walkscwlks 29120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5298  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-sn 4628  df-pr 4630  df-uni 4908  df-br 5148  df-opab 5210  df-iota 6494  df-fv 6550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator