|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > wlkResOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of opabresex2 7485 as of 13-Dec-2024. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 30-Dec-2020.) (Proof shortened by AV, 15-Jan-2021.) (New usage is discouraged.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| wlkResOLD.1 | ⊢ (𝑓(𝑊‘𝐺)𝑝 → 𝑓(Walks‘𝐺)𝑝) | 
| Ref | Expression | 
|---|---|
| wlkResOLD | ⊢ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑊‘𝐺)𝑝 ∧ 𝜑)} ∈ V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wlkResOLD.1 | . . 3 ⊢ (𝑓(𝑊‘𝐺)𝑝 → 𝑓(Walks‘𝐺)𝑝) | |
| 2 | 1 | gen2 1796 | . 2 ⊢ ∀𝑓∀𝑝(𝑓(𝑊‘𝐺)𝑝 → 𝑓(Walks‘𝐺)𝑝) | 
| 3 | wksv 29637 | . 2 ⊢ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V | |
| 4 | opabbrex 7484 | . 2 ⊢ ((∀𝑓∀𝑝(𝑓(𝑊‘𝐺)𝑝 → 𝑓(Walks‘𝐺)𝑝) ∧ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V) → {〈𝑓, 𝑝〉 ∣ (𝑓(𝑊‘𝐺)𝑝 ∧ 𝜑)} ∈ V) | |
| 5 | 2, 3, 4 | mp2an 692 | 1 ⊢ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑊‘𝐺)𝑝 ∧ 𝜑)} ∈ V | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∈ wcel 2108 Vcvv 3480 class class class wbr 5143 {copab 5205 ‘cfv 6561 Walkscwlks 29614 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-sn 4627 df-pr 4629 df-uni 4908 df-br 5144 df-opab 5206 df-iota 6514 df-fv 6569 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |