Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wlkResOLD | Structured version Visualization version GIF version |
Description: Obsolete version of opabresex2 7327 as of 13-Dec-2024. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 30-Dec-2020.) (Proof shortened by AV, 15-Jan-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
wlkResOLD.1 | ⊢ (𝑓(𝑊‘𝐺)𝑝 → 𝑓(Walks‘𝐺)𝑝) |
Ref | Expression |
---|---|
wlkResOLD | ⊢ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑊‘𝐺)𝑝 ∧ 𝜑)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkResOLD.1 | . . 3 ⊢ (𝑓(𝑊‘𝐺)𝑝 → 𝑓(Walks‘𝐺)𝑝) | |
2 | 1 | gen2 1799 | . 2 ⊢ ∀𝑓∀𝑝(𝑓(𝑊‘𝐺)𝑝 → 𝑓(Walks‘𝐺)𝑝) |
3 | wksv 27986 | . 2 ⊢ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V | |
4 | opabbrex 7326 | . 2 ⊢ ((∀𝑓∀𝑝(𝑓(𝑊‘𝐺)𝑝 → 𝑓(Walks‘𝐺)𝑝) ∧ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V) → {〈𝑓, 𝑝〉 ∣ (𝑓(𝑊‘𝐺)𝑝 ∧ 𝜑)} ∈ V) | |
5 | 2, 3, 4 | mp2an 689 | 1 ⊢ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑊‘𝐺)𝑝 ∧ 𝜑)} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 {copab 5136 ‘cfv 6433 Walkscwlks 27963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-pr 4564 df-uni 4840 df-br 5075 df-opab 5137 df-iota 6391 df-fv 6441 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |