MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptopabOLD Structured version   Visualization version   GIF version

Theorem fvmptopabOLD 7447
Description: Obsolete version of fvmptopab 7446 as of 13-Dec-2024. (Contributed by AV, 31-Jan-2021.) (Revised by AV, 29-Oct-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
fvmptopabOLD.1 ((𝜑𝑧 = 𝑍) → (𝜒𝜓))
fvmptopabOLD.2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐹𝑍)𝑦} ∈ V)
fvmptopabOLD.3 𝑀 = (𝑧 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜒)})
Assertion
Ref Expression
fvmptopabOLD (𝜑 → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
Distinct variable groups:   𝑧,𝐹   𝑥,𝑍,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝜓,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑧)

Proof of Theorem fvmptopabOLD
StepHypRef Expression
1 fvmptopabOLD.3 . . . 4 𝑀 = (𝑧 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜒)})
2 fveq2 6861 . . . . . . . 8 (𝑧 = 𝑍 → (𝐹𝑧) = (𝐹𝑍))
32breqd 5121 . . . . . . 7 (𝑧 = 𝑍 → (𝑥(𝐹𝑧)𝑦𝑥(𝐹𝑍)𝑦))
43adantl 481 . . . . . 6 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑧 = 𝑍) → (𝑥(𝐹𝑧)𝑦𝑥(𝐹𝑍)𝑦))
5 fvmptopabOLD.1 . . . . . . 7 ((𝜑𝑧 = 𝑍) → (𝜒𝜓))
65adantll 714 . . . . . 6 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑧 = 𝑍) → (𝜒𝜓))
74, 6anbi12d 632 . . . . 5 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑧 = 𝑍) → ((𝑥(𝐹𝑧)𝑦𝜒) ↔ (𝑥(𝐹𝑍)𝑦𝜓)))
87opabbidv 5176 . . . 4 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑧 = 𝑍) → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜒)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
9 simpl 482 . . . 4 ((𝑍 ∈ V ∧ 𝜑) → 𝑍 ∈ V)
10 id 22 . . . . . 6 (𝑥(𝐹𝑍)𝑦𝑥(𝐹𝑍)𝑦)
1110gen2 1796 . . . . 5 𝑥𝑦(𝑥(𝐹𝑍)𝑦𝑥(𝐹𝑍)𝑦)
12 fvmptopabOLD.2 . . . . . 6 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐹𝑍)𝑦} ∈ V)
1312adantl 481 . . . . 5 ((𝑍 ∈ V ∧ 𝜑) → {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐹𝑍)𝑦} ∈ V)
14 opabbrex 7443 . . . . 5 ((∀𝑥𝑦(𝑥(𝐹𝑍)𝑦𝑥(𝐹𝑍)𝑦) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐹𝑍)𝑦} ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ∈ V)
1511, 13, 14sylancr 587 . . . 4 ((𝑍 ∈ V ∧ 𝜑) → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ∈ V)
161, 8, 9, 15fvmptd2 6979 . . 3 ((𝑍 ∈ V ∧ 𝜑) → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
1716ex 412 . 2 (𝑍 ∈ V → (𝜑 → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)}))
18 fvprc 6853 . . . 4 𝑍 ∈ V → (𝑀𝑍) = ∅)
19 br0 5159 . . . . . . . 8 ¬ 𝑥𝑦
20 fvprc 6853 . . . . . . . . 9 𝑍 ∈ V → (𝐹𝑍) = ∅)
2120breqd 5121 . . . . . . . 8 𝑍 ∈ V → (𝑥(𝐹𝑍)𝑦𝑥𝑦))
2219, 21mtbiri 327 . . . . . . 7 𝑍 ∈ V → ¬ 𝑥(𝐹𝑍)𝑦)
2322intnanrd 489 . . . . . 6 𝑍 ∈ V → ¬ (𝑥(𝐹𝑍)𝑦𝜓))
2423alrimivv 1928 . . . . 5 𝑍 ∈ V → ∀𝑥𝑦 ¬ (𝑥(𝐹𝑍)𝑦𝜓))
25 opab0 5517 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} = ∅ ↔ ∀𝑥𝑦 ¬ (𝑥(𝐹𝑍)𝑦𝜓))
2624, 25sylibr 234 . . . 4 𝑍 ∈ V → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} = ∅)
2718, 26eqtr4d 2768 . . 3 𝑍 ∈ V → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
2827a1d 25 . 2 𝑍 ∈ V → (𝜑 → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)}))
2917, 28pm2.61i 182 1 (𝜑 → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299   class class class wbr 5110  {copab 5172  cmpt 5191  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator