MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptopabOLD Structured version   Visualization version   GIF version

Theorem fvmptopabOLD 7505
Description: Obsolete version of fvmptopab 7504 as of 13-Dec-2024. (Contributed by AV, 31-Jan-2021.) (Revised by AV, 29-Oct-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
fvmptopabOLD.1 ((𝜑𝑧 = 𝑍) → (𝜒𝜓))
fvmptopabOLD.2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐹𝑍)𝑦} ∈ V)
fvmptopabOLD.3 𝑀 = (𝑧 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜒)})
Assertion
Ref Expression
fvmptopabOLD (𝜑 → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
Distinct variable groups:   𝑧,𝐹   𝑥,𝑍,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝜓,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑧)

Proof of Theorem fvmptopabOLD
StepHypRef Expression
1 fvmptopabOLD.3 . . . 4 𝑀 = (𝑧 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜒)})
2 fveq2 6920 . . . . . . . 8 (𝑧 = 𝑍 → (𝐹𝑧) = (𝐹𝑍))
32breqd 5177 . . . . . . 7 (𝑧 = 𝑍 → (𝑥(𝐹𝑧)𝑦𝑥(𝐹𝑍)𝑦))
43adantl 481 . . . . . 6 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑧 = 𝑍) → (𝑥(𝐹𝑧)𝑦𝑥(𝐹𝑍)𝑦))
5 fvmptopabOLD.1 . . . . . . 7 ((𝜑𝑧 = 𝑍) → (𝜒𝜓))
65adantll 713 . . . . . 6 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑧 = 𝑍) → (𝜒𝜓))
74, 6anbi12d 631 . . . . 5 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑧 = 𝑍) → ((𝑥(𝐹𝑧)𝑦𝜒) ↔ (𝑥(𝐹𝑍)𝑦𝜓)))
87opabbidv 5232 . . . 4 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑧 = 𝑍) → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜒)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
9 simpl 482 . . . 4 ((𝑍 ∈ V ∧ 𝜑) → 𝑍 ∈ V)
10 id 22 . . . . . 6 (𝑥(𝐹𝑍)𝑦𝑥(𝐹𝑍)𝑦)
1110gen2 1794 . . . . 5 𝑥𝑦(𝑥(𝐹𝑍)𝑦𝑥(𝐹𝑍)𝑦)
12 fvmptopabOLD.2 . . . . . 6 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐹𝑍)𝑦} ∈ V)
1312adantl 481 . . . . 5 ((𝑍 ∈ V ∧ 𝜑) → {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐹𝑍)𝑦} ∈ V)
14 opabbrex 7501 . . . . 5 ((∀𝑥𝑦(𝑥(𝐹𝑍)𝑦𝑥(𝐹𝑍)𝑦) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐹𝑍)𝑦} ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ∈ V)
1511, 13, 14sylancr 586 . . . 4 ((𝑍 ∈ V ∧ 𝜑) → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ∈ V)
161, 8, 9, 15fvmptd2 7037 . . 3 ((𝑍 ∈ V ∧ 𝜑) → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
1716ex 412 . 2 (𝑍 ∈ V → (𝜑 → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)}))
18 fvprc 6912 . . . 4 𝑍 ∈ V → (𝑀𝑍) = ∅)
19 br0 5215 . . . . . . . 8 ¬ 𝑥𝑦
20 fvprc 6912 . . . . . . . . 9 𝑍 ∈ V → (𝐹𝑍) = ∅)
2120breqd 5177 . . . . . . . 8 𝑍 ∈ V → (𝑥(𝐹𝑍)𝑦𝑥𝑦))
2219, 21mtbiri 327 . . . . . . 7 𝑍 ∈ V → ¬ 𝑥(𝐹𝑍)𝑦)
2322intnanrd 489 . . . . . 6 𝑍 ∈ V → ¬ (𝑥(𝐹𝑍)𝑦𝜓))
2423alrimivv 1927 . . . . 5 𝑍 ∈ V → ∀𝑥𝑦 ¬ (𝑥(𝐹𝑍)𝑦𝜓))
25 opab0 5573 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} = ∅ ↔ ∀𝑥𝑦 ¬ (𝑥(𝐹𝑍)𝑦𝜓))
2624, 25sylibr 234 . . . 4 𝑍 ∈ V → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} = ∅)
2718, 26eqtr4d 2783 . . 3 𝑍 ∈ V → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
2827a1d 25 . 2 𝑍 ∈ V → (𝜑 → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)}))
2917, 28pm2.61i 182 1 (𝜑 → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352   class class class wbr 5166  {copab 5228  cmpt 5249  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator