Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opabf Structured version   Visualization version   GIF version

Theorem opabf 36498
Description: A class abstraction of a collection of ordered pairs with a negated wff is the empty set. (Contributed by Peter Mazsa, 21-Oct-2019.) (Proof shortened by Thierry Arnoux, 18-Feb-2022.)
Hypothesis
Ref Expression
opabf.1 ¬ 𝜑
Assertion
Ref Expression
opabf {⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅

Proof of Theorem opabf
StepHypRef Expression
1 opabf.1 . . 3 ¬ 𝜑
21gen2 1799 . 2 𝑥𝑦 ¬ 𝜑
3 opab0 5467 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅ ↔ ∀𝑥𝑦 ¬ 𝜑)
42, 3mpbir 230 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1537   = wceq 1539  c0 4256  {copab 5136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-opab 5137
This theorem is referenced by:  coss0  36597
  Copyright terms: Public domain W3C validator