![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opabf | Structured version Visualization version GIF version |
Description: A class abstraction of a collection of ordered pairs with a negated wff is the empty set. (Contributed by Peter Mazsa, 21-Oct-2019.) (Proof shortened by Thierry Arnoux, 18-Feb-2022.) |
Ref | Expression |
---|---|
opabf.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
opabf | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabf.1 | . . 3 ⊢ ¬ 𝜑 | |
2 | 1 | gen2 1794 | . 2 ⊢ ∀𝑥∀𝑦 ¬ 𝜑 |
3 | opab0 5573 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ ↔ ∀𝑥∀𝑦 ¬ 𝜑) | |
4 | 2, 3 | mpbir 231 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1535 = wceq 1537 ∅c0 4352 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 |
This theorem is referenced by: coss0 38435 |
Copyright terms: Public domain | W3C validator |