| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opabf | Structured version Visualization version GIF version | ||
| Description: A class abstraction of a collection of ordered pairs with a negated wff is the empty set. (Contributed by Peter Mazsa, 21-Oct-2019.) (Proof shortened by Thierry Arnoux, 18-Feb-2022.) |
| Ref | Expression |
|---|---|
| opabf.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| opabf | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabf.1 | . . 3 ⊢ ¬ 𝜑 | |
| 2 | 1 | gen2 1797 | . 2 ⊢ ∀𝑥∀𝑦 ¬ 𝜑 |
| 3 | opab0 5489 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ ↔ ∀𝑥∀𝑦 ¬ 𝜑) | |
| 4 | 2, 3 | mpbir 231 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1539 = wceq 1541 ∅c0 4278 {copab 5148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-opab 5149 |
| This theorem is referenced by: coss0 38516 |
| Copyright terms: Public domain | W3C validator |