Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opabf | Structured version Visualization version GIF version |
Description: A class abstraction of a collection of ordered pairs with a negated wff is the empty set. (Contributed by Peter Mazsa, 21-Oct-2019.) (Proof shortened by Thierry Arnoux, 18-Feb-2022.) |
Ref | Expression |
---|---|
opabf.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
opabf | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabf.1 | . . 3 ⊢ ¬ 𝜑 | |
2 | 1 | gen2 1799 | . 2 ⊢ ∀𝑥∀𝑦 ¬ 𝜑 |
3 | opab0 5467 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ ↔ ∀𝑥∀𝑦 ¬ 𝜑) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1537 = wceq 1539 ∅c0 4256 {copab 5136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 |
This theorem is referenced by: coss0 36597 |
Copyright terms: Public domain | W3C validator |