Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opabf Structured version   Visualization version   GIF version

Theorem opabf 38396
Description: A class abstraction of a collection of ordered pairs with a negated wff is the empty set. (Contributed by Peter Mazsa, 21-Oct-2019.) (Proof shortened by Thierry Arnoux, 18-Feb-2022.)
Hypothesis
Ref Expression
opabf.1 ¬ 𝜑
Assertion
Ref Expression
opabf {⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅

Proof of Theorem opabf
StepHypRef Expression
1 opabf.1 . . 3 ¬ 𝜑
21gen2 1797 . 2 𝑥𝑦 ¬ 𝜑
3 opab0 5489 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅ ↔ ∀𝑥𝑦 ¬ 𝜑)
42, 3mpbir 231 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1539   = wceq 1541  c0 4278  {copab 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-opab 5149
This theorem is referenced by:  coss0  38516
  Copyright terms: Public domain W3C validator