| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opabf | Structured version Visualization version GIF version | ||
| Description: A class abstraction of a collection of ordered pairs with a negated wff is the empty set. (Contributed by Peter Mazsa, 21-Oct-2019.) (Proof shortened by Thierry Arnoux, 18-Feb-2022.) |
| Ref | Expression |
|---|---|
| opabf.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| opabf | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabf.1 | . . 3 ⊢ ¬ 𝜑 | |
| 2 | 1 | gen2 1796 | . 2 ⊢ ∀𝑥∀𝑦 ¬ 𝜑 |
| 3 | opab0 5517 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ ↔ ∀𝑥∀𝑦 ¬ 𝜑) | |
| 4 | 2, 3 | mpbir 231 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1538 = wceq 1540 ∅c0 4299 {copab 5172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-opab 5173 |
| This theorem is referenced by: coss0 38477 |
| Copyright terms: Public domain | W3C validator |