| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inxp2 | Structured version Visualization version GIF version | ||
| Description: Intersection with a Cartesian product. (Contributed by Peter Mazsa, 18-Jul-2019.) |
| Ref | Expression |
|---|---|
| inxp2 | ⊢ (𝑅 ∩ (𝐴 × 𝐵)) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relinxp 5760 | . . 3 ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) | |
| 2 | dfrel4v 6145 | . . 3 ⊢ (Rel (𝑅 ∩ (𝐴 × 𝐵)) ↔ (𝑅 ∩ (𝐴 × 𝐵)) = {〈𝑥, 𝑦〉 ∣ 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦}) | |
| 3 | 1, 2 | mpbi 230 | . 2 ⊢ (𝑅 ∩ (𝐴 × 𝐵)) = {〈𝑥, 𝑦〉 ∣ 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦} |
| 4 | brinxp2 5699 | . . 3 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)) | |
| 5 | 4 | opabbii 5162 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)} |
| 6 | 3, 5 | eqtri 2756 | 1 ⊢ (𝑅 ∩ (𝐴 × 𝐵)) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 class class class wbr 5095 {copab 5157 × cxp 5619 Rel wrel 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 |
| This theorem is referenced by: xrninxp 38512 xrninxp2 38513 |
| Copyright terms: Public domain | W3C validator |