![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inxp2 | Structured version Visualization version GIF version |
Description: Intersection with a Cartesian product. (Contributed by Peter Mazsa, 18-Jul-2019.) |
Ref | Expression |
---|---|
inxp2 | ⊢ (𝑅 ∩ (𝐴 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relinxp 5814 | . . 3 ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) | |
2 | dfrel4v 6189 | . . 3 ⊢ (Rel (𝑅 ∩ (𝐴 × 𝐵)) ↔ (𝑅 ∩ (𝐴 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦}) | |
3 | 1, 2 | mpbi 229 | . 2 ⊢ (𝑅 ∩ (𝐴 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦} |
4 | brinxp2 5753 | . . 3 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)) | |
5 | 4 | opabbii 5215 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)} |
6 | 3, 5 | eqtri 2759 | 1 ⊢ (𝑅 ∩ (𝐴 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∩ cin 3947 class class class wbr 5148 {copab 5210 × cxp 5674 Rel wrel 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 |
This theorem is referenced by: xrninxp 37726 xrninxp2 37727 |
Copyright terms: Public domain | W3C validator |