Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inxp2 Structured version   Visualization version   GIF version

Theorem inxp2 36497
Description: Intersection with a Cartesian product. (Contributed by Peter Mazsa, 18-Jul-2019.)
Assertion
Ref Expression
inxp2 (𝑅 ∩ (𝐴 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦)}
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem inxp2
StepHypRef Expression
1 relinxp 5724 . . 3 Rel (𝑅 ∩ (𝐴 × 𝐵))
2 dfrel4v 6093 . . 3 (Rel (𝑅 ∩ (𝐴 × 𝐵)) ↔ (𝑅 ∩ (𝐴 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦})
31, 2mpbi 229 . 2 (𝑅 ∩ (𝐴 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦}
4 brinxp2 5664 . . 3 (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦))
54opabbii 5141 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦)}
63, 5eqtri 2766 1 (𝑅 ∩ (𝐴 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  cin 3886   class class class wbr 5074  {copab 5136   × cxp 5587  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597
This theorem is referenced by:  xrninxp  36518  xrninxp2  36519
  Copyright terms: Public domain W3C validator