Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inxp2 | Structured version Visualization version GIF version |
Description: Intersection with a Cartesian product. (Contributed by Peter Mazsa, 18-Jul-2019.) |
Ref | Expression |
---|---|
inxp2 | ⊢ (𝑅 ∩ (𝐴 × 𝐵)) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relinxp 5713 | . . 3 ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) | |
2 | dfrel4v 6082 | . . 3 ⊢ (Rel (𝑅 ∩ (𝐴 × 𝐵)) ↔ (𝑅 ∩ (𝐴 × 𝐵)) = {〈𝑥, 𝑦〉 ∣ 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦}) | |
3 | 1, 2 | mpbi 229 | . 2 ⊢ (𝑅 ∩ (𝐴 × 𝐵)) = {〈𝑥, 𝑦〉 ∣ 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦} |
4 | brinxp2 5655 | . . 3 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)) | |
5 | 4 | opabbii 5137 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)} |
6 | 3, 5 | eqtri 2766 | 1 ⊢ (𝑅 ∩ (𝐴 × 𝐵)) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 class class class wbr 5070 {copab 5132 × cxp 5578 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 |
This theorem is referenced by: xrninxp 36445 xrninxp2 36446 |
Copyright terms: Public domain | W3C validator |