Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inxp2 Structured version   Visualization version   GIF version

Theorem inxp2 35655
Description: Intersection with a Cartesian product. (Contributed by Peter Mazsa, 18-Jul-2019.)
Assertion
Ref Expression
inxp2 (𝑅 ∩ (𝐴 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦)}
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem inxp2
StepHypRef Expression
1 relinxp 5663 . . 3 Rel (𝑅 ∩ (𝐴 × 𝐵))
2 dfrel4v 6023 . . 3 (Rel (𝑅 ∩ (𝐴 × 𝐵)) ↔ (𝑅 ∩ (𝐴 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦})
31, 2mpbi 232 . 2 (𝑅 ∩ (𝐴 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦}
4 brinxp2 5605 . . 3 (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦))
54opabbii 5109 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦)}
63, 5eqtri 2843 1 (𝑅 ∩ (𝐴 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  wcel 2114  cin 3912   class class class wbr 5042  {copab 5104   × cxp 5529  Rel wrel 5536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pr 5306
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3475  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-sn 4544  df-pr 4546  df-op 4550  df-br 5043  df-opab 5105  df-xp 5537  df-rel 5538  df-cnv 5539
This theorem is referenced by:  xrninxp  35676  xrninxp2  35677
  Copyright terms: Public domain W3C validator