Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inxp2 Structured version   Visualization version   GIF version

Theorem inxp2 36424
Description: Intersection with a Cartesian product. (Contributed by Peter Mazsa, 18-Jul-2019.)
Assertion
Ref Expression
inxp2 (𝑅 ∩ (𝐴 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦)}
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem inxp2
StepHypRef Expression
1 relinxp 5713 . . 3 Rel (𝑅 ∩ (𝐴 × 𝐵))
2 dfrel4v 6082 . . 3 (Rel (𝑅 ∩ (𝐴 × 𝐵)) ↔ (𝑅 ∩ (𝐴 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦})
31, 2mpbi 229 . 2 (𝑅 ∩ (𝐴 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦}
4 brinxp2 5655 . . 3 (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦))
54opabbii 5137 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦)}
63, 5eqtri 2766 1 (𝑅 ∩ (𝐴 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  cin 3882   class class class wbr 5070  {copab 5132   × cxp 5578  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588
This theorem is referenced by:  xrninxp  36445  xrninxp2  36446
  Copyright terms: Public domain W3C validator