Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inxp2 Structured version   Visualization version   GIF version

Theorem inxp2 37174
Description: Intersection with a Cartesian product. (Contributed by Peter Mazsa, 18-Jul-2019.)
Assertion
Ref Expression
inxp2 (𝑅 ∩ (𝐴 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦)}
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem inxp2
StepHypRef Expression
1 relinxp 5812 . . 3 Rel (𝑅 ∩ (𝐴 × 𝐵))
2 dfrel4v 6186 . . 3 (Rel (𝑅 ∩ (𝐴 × 𝐵)) ↔ (𝑅 ∩ (𝐴 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦})
31, 2mpbi 229 . 2 (𝑅 ∩ (𝐴 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦}
4 brinxp2 5751 . . 3 (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦))
54opabbii 5214 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦)}
63, 5eqtri 2761 1 (𝑅 ∩ (𝐴 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wcel 2107  cin 3946   class class class wbr 5147  {copab 5209   × cxp 5673  Rel wrel 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683
This theorem is referenced by:  xrninxp  37200  xrninxp2  37201
  Copyright terms: Public domain W3C validator