![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelxpii | Structured version Visualization version GIF version |
Description: Ordered pair membership in a Cartesian product (implication), induction form. (Contributed by Steven Nguyen, 17-Jul-2022.) |
Ref | Expression |
---|---|
opelxpii.1 | ⊢ 𝐴 ∈ 𝐶 |
opelxpii.2 | ⊢ 𝐵 ∈ 𝐷 |
Ref | Expression |
---|---|
opelxpii | ⊢ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpii.1 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
2 | opelxpii.2 | . 2 ⊢ 𝐵 ∈ 𝐷 | |
3 | opelxpi 5714 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷)) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ⟨cop 4635 × cxp 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-opab 5212 df-xp 5683 |
This theorem is referenced by: pzriprnglem7 46811 pzriprng1ALT 46820 |
Copyright terms: Public domain | W3C validator |