MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelxpii Structured version   Visualization version   GIF version

Theorem opelxpii 5654
Description: Ordered pair membership in a Cartesian product (implication), induction form. (Contributed by Steven Nguyen, 17-Jul-2022.)
Hypotheses
Ref Expression
opelxpii.1 𝐴𝐶
opelxpii.2 𝐵𝐷
Assertion
Ref Expression
opelxpii 𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷)

Proof of Theorem opelxpii
StepHypRef Expression
1 opelxpii.1 . 2 𝐴𝐶
2 opelxpii.2 . 2 𝐵𝐷
3 opelxpi 5653 . 2 ((𝐴𝐶𝐵𝐷) → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷))
41, 2, 3mp2an 692 1 𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  cop 4582   × cxp 5614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-opab 5154  df-xp 5622
This theorem is referenced by:  pzriprnglem7  21422  pzriprng1ALT  21431  grlimedgnedg  48161
  Copyright terms: Public domain W3C validator