MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelxpii Structured version   Visualization version   GIF version

Theorem opelxpii 5738
Description: Ordered pair membership in a Cartesian product (implication), induction form. (Contributed by Steven Nguyen, 17-Jul-2022.)
Hypotheses
Ref Expression
opelxpii.1 𝐴𝐶
opelxpii.2 𝐵𝐷
Assertion
Ref Expression
opelxpii 𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷)

Proof of Theorem opelxpii
StepHypRef Expression
1 opelxpii.1 . 2 𝐴𝐶
2 opelxpii.2 . 2 𝐵𝐷
3 opelxpi 5737 . 2 ((𝐴𝐶𝐵𝐷) → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷))
41, 2, 3mp2an 691 1 𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  cop 4654   × cxp 5698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5229  df-xp 5706
This theorem is referenced by:  pzriprnglem7  21523  pzriprng1ALT  21532
  Copyright terms: Public domain W3C validator