![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelxpii | Structured version Visualization version GIF version |
Description: Ordered pair membership in a Cartesian product (implication), induction form. (Contributed by Steven Nguyen, 17-Jul-2022.) |
Ref | Expression |
---|---|
opelxpii.1 | ⊢ 𝐴 ∈ 𝐶 |
opelxpii.2 | ⊢ 𝐵 ∈ 𝐷 |
Ref | Expression |
---|---|
opelxpii | ⊢ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpii.1 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
2 | opelxpii.2 | . 2 ⊢ 𝐵 ∈ 𝐷 | |
3 | opelxpi 5730 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 〈cop 4640 × cxp 5691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-opab 5214 df-xp 5699 |
This theorem is referenced by: pzriprnglem7 21525 pzriprng1ALT 21534 |
Copyright terms: Public domain | W3C validator |