MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelxpii Structured version   Visualization version   GIF version

Theorem opelxpii 5731
Description: Ordered pair membership in a Cartesian product (implication), induction form. (Contributed by Steven Nguyen, 17-Jul-2022.)
Hypotheses
Ref Expression
opelxpii.1 𝐴𝐶
opelxpii.2 𝐵𝐷
Assertion
Ref Expression
opelxpii 𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷)

Proof of Theorem opelxpii
StepHypRef Expression
1 opelxpii.1 . 2 𝐴𝐶
2 opelxpii.2 . 2 𝐵𝐷
3 opelxpi 5730 . 2 ((𝐴𝐶𝐵𝐷) → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷))
41, 2, 3mp2an 692 1 𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  cop 4640   × cxp 5691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-opab 5214  df-xp 5699
This theorem is referenced by:  pzriprnglem7  21525  pzriprng1ALT  21534
  Copyright terms: Public domain W3C validator