MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelxpii Structured version   Visualization version   GIF version

Theorem opelxpii 5679
Description: Ordered pair membership in a Cartesian product (implication), induction form. (Contributed by Steven Nguyen, 17-Jul-2022.)
Hypotheses
Ref Expression
opelxpii.1 𝐴𝐶
opelxpii.2 𝐵𝐷
Assertion
Ref Expression
opelxpii 𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷)

Proof of Theorem opelxpii
StepHypRef Expression
1 opelxpii.1 . 2 𝐴𝐶
2 opelxpii.2 . 2 𝐵𝐷
3 opelxpi 5678 . 2 ((𝐴𝐶𝐵𝐷) → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷))
41, 2, 3mp2an 692 1 𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  cop 4598   × cxp 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-opab 5173  df-xp 5647
This theorem is referenced by:  pzriprnglem7  21404  pzriprng1ALT  21413
  Copyright terms: Public domain W3C validator