| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelxpii | Structured version Visualization version GIF version | ||
| Description: Ordered pair membership in a Cartesian product (implication), induction form. (Contributed by Steven Nguyen, 17-Jul-2022.) |
| Ref | Expression |
|---|---|
| opelxpii.1 | ⊢ 𝐴 ∈ 𝐶 |
| opelxpii.2 | ⊢ 𝐵 ∈ 𝐷 |
| Ref | Expression |
|---|---|
| opelxpii | ⊢ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpii.1 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
| 2 | opelxpii.2 | . 2 ⊢ 𝐵 ∈ 𝐷 | |
| 3 | opelxpi 5656 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 〈cop 4581 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-opab 5156 df-xp 5625 |
| This theorem is referenced by: pzriprnglem7 21426 pzriprng1ALT 21435 grlimedgnedg 48255 |
| Copyright terms: Public domain | W3C validator |