Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opelxpii | Structured version Visualization version GIF version |
Description: Ordered pair membership in a Cartesian product (implication). (Contributed by Steven Nguyen, 17-Jul-2022.) |
Ref | Expression |
---|---|
opelxpii.1 | ⊢ 𝐴 ∈ 𝐶 |
opelxpii.2 | ⊢ 𝐵 ∈ 𝐷 |
Ref | Expression |
---|---|
opelxpii | ⊢ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpii.1 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
2 | opelxpii.2 | . 2 ⊢ 𝐵 ∈ 𝐷 | |
3 | opelxpi 5588 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 〈cop 4547 × cxp 5549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-opab 5116 df-xp 5557 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |