| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelxpii | Structured version Visualization version GIF version | ||
| Description: Ordered pair membership in a Cartesian product (implication), induction form. (Contributed by Steven Nguyen, 17-Jul-2022.) |
| Ref | Expression |
|---|---|
| opelxpii.1 | ⊢ 𝐴 ∈ 𝐶 |
| opelxpii.2 | ⊢ 𝐵 ∈ 𝐷 |
| Ref | Expression |
|---|---|
| opelxpii | ⊢ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpii.1 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
| 2 | opelxpii.2 | . 2 ⊢ 𝐵 ∈ 𝐷 | |
| 3 | opelxpi 5678 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 〈cop 4598 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-opab 5173 df-xp 5647 |
| This theorem is referenced by: pzriprnglem7 21404 pzriprng1ALT 21413 |
| Copyright terms: Public domain | W3C validator |