MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprng1ALT Structured version   Visualization version   GIF version

Theorem pzriprng1ALT 21455
Description: The ring unity of the ring (ℤring ×sring) constructed from the ring unity of the two-sided ideal (ℤ × {0}) and the ring unity of the quotient of the ring and the ideal (using ring2idlqus1 21278). (Contributed by AV, 24-Mar-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
pzriprng1ALT (1r‘(ℤring ×sring)) = ⟨1, 1⟩

Proof of Theorem pzriprng1ALT
StepHypRef Expression
1 eqid 2735 . . . . 5 (ℤring ×sring) = (ℤring ×sring)
21pzriprnglem1 21440 . . . 4 (ℤring ×sring) ∈ Rng
3 eqid 2735 . . . . 5 (ℤ × {0}) = (ℤ × {0})
4 eqid 2735 . . . . 5 ((ℤring ×sring) ↾s (ℤ × {0})) = ((ℤring ×sring) ↾s (ℤ × {0}))
51, 3, 4pzriprnglem8 21447 . . . 4 (ℤ × {0}) ∈ (2Ideal‘(ℤring ×sring))
62, 5pm3.2i 470 . . 3 ((ℤring ×sring) ∈ Rng ∧ (ℤ × {0}) ∈ (2Ideal‘(ℤring ×sring)))
71, 3, 4pzriprnglem7 21446 . . . 4 ((ℤring ×sring) ↾s (ℤ × {0})) ∈ Ring
8 eqid 2735 . . . . 5 (1r‘((ℤring ×sring) ↾s (ℤ × {0}))) = (1r‘((ℤring ×sring) ↾s (ℤ × {0})))
9 eqid 2735 . . . . 5 ((ℤring ×sring) ~QG (ℤ × {0})) = ((ℤring ×sring) ~QG (ℤ × {0}))
10 eqid 2735 . . . . 5 ((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0}))) = ((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0})))
111, 3, 4, 8, 9, 10pzriprnglem13 21452 . . . 4 ((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0}))) ∈ Ring
127, 11pm3.2i 470 . . 3 (((ℤring ×sring) ↾s (ℤ × {0})) ∈ Ring ∧ ((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0}))) ∈ Ring)
13 1z 12620 . . . . 5 1 ∈ ℤ
14 1ex 11229 . . . . . 6 1 ∈ V
1514snid 4638 . . . . 5 1 ∈ {1}
1613, 15opelxpii 5692 . . . 4 ⟨1, 1⟩ ∈ (ℤ × {1})
171, 3, 4, 8, 9, 10pzriprnglem14 21453 . . . 4 (1r‘((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0})))) = (ℤ × {1})
1816, 17eleqtrri 2833 . . 3 ⟨1, 1⟩ ∈ (1r‘((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0}))))
19 eqid 2735 . . . . 5 (.r‘(ℤring ×sring)) = (.r‘(ℤring ×sring))
20 eqid 2735 . . . . 5 (-g‘(ℤring ×sring)) = (-g‘(ℤring ×sring))
21 eqid 2735 . . . . 5 (+g‘(ℤring ×sring)) = (+g‘(ℤring ×sring))
2219, 8, 20, 21ring2idlqus1 21278 . . . 4 ((((ℤring ×sring) ∈ Rng ∧ (ℤ × {0}) ∈ (2Ideal‘(ℤring ×sring))) ∧ (((ℤring ×sring) ↾s (ℤ × {0})) ∈ Ring ∧ ((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0}))) ∈ Ring) ∧ ⟨1, 1⟩ ∈ (1r‘((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0}))))) → ((ℤring ×sring) ∈ Ring ∧ (1r‘(ℤring ×sring)) = ((⟨1, 1⟩(-g‘(ℤring ×sring))((1r‘((ℤring ×sring) ↾s (ℤ × {0})))(.r‘(ℤring ×sring))⟨1, 1⟩))(+g‘(ℤring ×sring))(1r‘((ℤring ×sring) ↾s (ℤ × {0}))))))
2322simprd 495 . . 3 ((((ℤring ×sring) ∈ Rng ∧ (ℤ × {0}) ∈ (2Ideal‘(ℤring ×sring))) ∧ (((ℤring ×sring) ↾s (ℤ × {0})) ∈ Ring ∧ ((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0}))) ∈ Ring) ∧ ⟨1, 1⟩ ∈ (1r‘((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0}))))) → (1r‘(ℤring ×sring)) = ((⟨1, 1⟩(-g‘(ℤring ×sring))((1r‘((ℤring ×sring) ↾s (ℤ × {0})))(.r‘(ℤring ×sring))⟨1, 1⟩))(+g‘(ℤring ×sring))(1r‘((ℤring ×sring) ↾s (ℤ × {0})))))
246, 12, 18, 23mp3an 1463 . 2 (1r‘(ℤring ×sring)) = ((⟨1, 1⟩(-g‘(ℤring ×sring))((1r‘((ℤring ×sring) ↾s (ℤ × {0})))(.r‘(ℤring ×sring))⟨1, 1⟩))(+g‘(ℤring ×sring))(1r‘((ℤring ×sring) ↾s (ℤ × {0}))))
251, 3, 4, 8pzriprnglem9 21448 . . . . 5 (1r‘((ℤring ×sring) ↾s (ℤ × {0}))) = ⟨1, 0⟩
2625oveq1i 7413 . . . 4 ((1r‘((ℤring ×sring) ↾s (ℤ × {0})))(.r‘(ℤring ×sring))⟨1, 1⟩) = (⟨1, 0⟩(.r‘(ℤring ×sring))⟨1, 1⟩)
2726oveq2i 7414 . . 3 (⟨1, 1⟩(-g‘(ℤring ×sring))((1r‘((ℤring ×sring) ↾s (ℤ × {0})))(.r‘(ℤring ×sring))⟨1, 1⟩)) = (⟨1, 1⟩(-g‘(ℤring ×sring))(⟨1, 0⟩(.r‘(ℤring ×sring))⟨1, 1⟩))
2827, 25oveq12i 7415 . 2 ((⟨1, 1⟩(-g‘(ℤring ×sring))((1r‘((ℤring ×sring) ↾s (ℤ × {0})))(.r‘(ℤring ×sring))⟨1, 1⟩))(+g‘(ℤring ×sring))(1r‘((ℤring ×sring) ↾s (ℤ × {0})))) = ((⟨1, 1⟩(-g‘(ℤring ×sring))(⟨1, 0⟩(.r‘(ℤring ×sring))⟨1, 1⟩))(+g‘(ℤring ×sring))⟨1, 0⟩)
29 zringring 21408 . . . . . . 7 ring ∈ Ring
30 zringbas 21412 . . . . . . . 8 ℤ = (Base‘ℤring)
31 id 22 . . . . . . . 8 (ℤring ∈ Ring → ℤring ∈ Ring)
3213a1i 11 . . . . . . . 8 (ℤring ∈ Ring → 1 ∈ ℤ)
33 0zd 12598 . . . . . . . 8 (ℤring ∈ Ring → 0 ∈ ℤ)
34 zmulcl 12639 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 1 ∈ ℤ) → (1 · 1) ∈ ℤ)
3513, 13, 34mp2an 692 . . . . . . . . 9 (1 · 1) ∈ ℤ
3635a1i 11 . . . . . . . 8 (ℤring ∈ Ring → (1 · 1) ∈ ℤ)
37 zringmulr 21416 . . . . . . . . . . . 12 · = (.r‘ℤring)
3837eqcomi 2744 . . . . . . . . . . 11 (.r‘ℤring) = ·
3938oveqi 7416 . . . . . . . . . 10 (0(.r‘ℤring)1) = (0 · 1)
40 0z 12597 . . . . . . . . . . 11 0 ∈ ℤ
41 zmulcl 12639 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (0 · 1) ∈ ℤ)
4240, 13, 41mp2an 692 . . . . . . . . . 10 (0 · 1) ∈ ℤ
4339, 42eqeltri 2830 . . . . . . . . 9 (0(.r‘ℤring)1) ∈ ℤ
4443a1i 11 . . . . . . . 8 (ℤring ∈ Ring → (0(.r‘ℤring)1) ∈ ℤ)
45 eqid 2735 . . . . . . . 8 (.r‘ℤring) = (.r‘ℤring)
461, 30, 30, 31, 31, 32, 33, 32, 32, 36, 44, 37, 45, 19xpsmul 17587 . . . . . . 7 (ℤring ∈ Ring → (⟨1, 0⟩(.r‘(ℤring ×sring))⟨1, 1⟩) = ⟨(1 · 1), (0(.r‘ℤring)1)⟩)
4729, 46ax-mp 5 . . . . . 6 (⟨1, 0⟩(.r‘(ℤring ×sring))⟨1, 1⟩) = ⟨(1 · 1), (0(.r‘ℤring)1)⟩
4847oveq2i 7414 . . . . 5 (⟨1, 1⟩(-g‘(ℤring ×sring))(⟨1, 0⟩(.r‘(ℤring ×sring))⟨1, 1⟩)) = (⟨1, 1⟩(-g‘(ℤring ×sring))⟨(1 · 1), (0(.r‘ℤring)1)⟩)
49 1t1e1 12400 . . . . . . 7 (1 · 1) = 1
50 ax-1cn 11185 . . . . . . . . 9 1 ∈ ℂ
5150mul02i 11422 . . . . . . . 8 (0 · 1) = 0
5239, 51eqtri 2758 . . . . . . 7 (0(.r‘ℤring)1) = 0
5349, 52opeq12i 4854 . . . . . 6 ⟨(1 · 1), (0(.r‘ℤring)1)⟩ = ⟨1, 0⟩
5453oveq2i 7414 . . . . 5 (⟨1, 1⟩(-g‘(ℤring ×sring))⟨(1 · 1), (0(.r‘ℤring)1)⟩) = (⟨1, 1⟩(-g‘(ℤring ×sring))⟨1, 0⟩)
55 zringgrp 21411 . . . . . . . 8 ring ∈ Grp
5655a1i 11 . . . . . . 7 (1 ∈ ℤ → ℤring ∈ Grp)
57 id 22 . . . . . . 7 (1 ∈ ℤ → 1 ∈ ℤ)
58 0zd 12598 . . . . . . 7 (1 ∈ ℤ → 0 ∈ ℤ)
59 eqid 2735 . . . . . . 7 (-g‘ℤring) = (-g‘ℤring)
601, 30, 30, 56, 56, 57, 57, 57, 58, 59, 59, 20xpsgrpsub 19042 . . . . . 6 (1 ∈ ℤ → (⟨1, 1⟩(-g‘(ℤring ×sring))⟨1, 0⟩) = ⟨(1(-g‘ℤring)1), (1(-g‘ℤring)0)⟩)
6113, 60ax-mp 5 . . . . 5 (⟨1, 1⟩(-g‘(ℤring ×sring))⟨1, 0⟩) = ⟨(1(-g‘ℤring)1), (1(-g‘ℤring)0)⟩
6248, 54, 613eqtri 2762 . . . 4 (⟨1, 1⟩(-g‘(ℤring ×sring))(⟨1, 0⟩(.r‘(ℤring ×sring))⟨1, 1⟩)) = ⟨(1(-g‘ℤring)1), (1(-g‘ℤring)0)⟩
6362oveq1i 7413 . . 3 ((⟨1, 1⟩(-g‘(ℤring ×sring))(⟨1, 0⟩(.r‘(ℤring ×sring))⟨1, 1⟩))(+g‘(ℤring ×sring))⟨1, 0⟩) = (⟨(1(-g‘ℤring)1), (1(-g‘ℤring)0)⟩(+g‘(ℤring ×sring))⟨1, 0⟩)
6459zringsub 21414 . . . . . . 7 ((1 ∈ ℤ ∧ 1 ∈ ℤ) → (1(-g‘ℤring)1) = (1 − 1))
6513, 13, 64mp2an 692 . . . . . 6 (1(-g‘ℤring)1) = (1 − 1)
66 1m1e0 12310 . . . . . 6 (1 − 1) = 0
6765, 66eqtri 2758 . . . . 5 (1(-g‘ℤring)1) = 0
6859zringsub 21414 . . . . . 6 ((1 ∈ ℤ ∧ 0 ∈ ℤ) → (1(-g‘ℤring)0) = (1 − 0))
6913, 40, 68mp2an 692 . . . . 5 (1(-g‘ℤring)0) = (1 − 0)
7067, 69opeq12i 4854 . . . 4 ⟨(1(-g‘ℤring)1), (1(-g‘ℤring)0)⟩ = ⟨0, (1 − 0)⟩
7170oveq1i 7413 . . 3 (⟨(1(-g‘ℤring)1), (1(-g‘ℤring)0)⟩(+g‘(ℤring ×sring))⟨1, 0⟩) = (⟨0, (1 − 0)⟩(+g‘(ℤring ×sring))⟨1, 0⟩)
72 1m0e1 12359 . . . . . 6 (1 − 0) = 1
7372opeq2i 4853 . . . . 5 ⟨0, (1 − 0)⟩ = ⟨0, 1⟩
7473oveq1i 7413 . . . 4 (⟨0, (1 − 0)⟩(+g‘(ℤring ×sring))⟨1, 0⟩) = (⟨0, 1⟩(+g‘(ℤring ×sring))⟨1, 0⟩)
7529a1i 11 . . . . . 6 (1 ∈ ℤ → ℤring ∈ Ring)
7658, 57zaddcld 12699 . . . . . 6 (1 ∈ ℤ → (0 + 1) ∈ ℤ)
7757, 58zaddcld 12699 . . . . . 6 (1 ∈ ℤ → (1 + 0) ∈ ℤ)
78 zringplusg 21413 . . . . . 6 + = (+g‘ℤring)
791, 30, 30, 75, 75, 58, 57, 57, 58, 76, 77, 78, 78, 21xpsadd 17586 . . . . 5 (1 ∈ ℤ → (⟨0, 1⟩(+g‘(ℤring ×sring))⟨1, 0⟩) = ⟨(0 + 1), (1 + 0)⟩)
8013, 79ax-mp 5 . . . 4 (⟨0, 1⟩(+g‘(ℤring ×sring))⟨1, 0⟩) = ⟨(0 + 1), (1 + 0)⟩
81 0p1e1 12360 . . . . 5 (0 + 1) = 1
82 1p0e1 12362 . . . . 5 (1 + 0) = 1
8381, 82opeq12i 4854 . . . 4 ⟨(0 + 1), (1 + 0)⟩ = ⟨1, 1⟩
8474, 80, 833eqtri 2762 . . 3 (⟨0, (1 − 0)⟩(+g‘(ℤring ×sring))⟨1, 0⟩) = ⟨1, 1⟩
8563, 71, 843eqtri 2762 . 2 ((⟨1, 1⟩(-g‘(ℤring ×sring))(⟨1, 0⟩(.r‘(ℤring ×sring))⟨1, 1⟩))(+g‘(ℤring ×sring))⟨1, 0⟩) = ⟨1, 1⟩
8624, 28, 853eqtri 2762 1 (1r‘(ℤring ×sring)) = ⟨1, 1⟩
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2108  {csn 4601  cop 4607   × cxp 5652  cfv 6530  (class class class)co 7403  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132  cmin 11464  cz 12586  s cress 17249  +gcplusg 17269  .rcmulr 17270   /s cqus 17517   ×s cxps 17518  Grpcgrp 18914  -gcsg 18916   ~QG cqg 19103  Rngcrng 20110  1rcur 20139  Ringcrg 20191  2Idealc2idl 21208  ringczring 21405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-addf 11206  ax-mulf 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-ec 8719  df-qs 8723  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-0g 17453  df-prds 17459  df-imas 17520  df-qus 17521  df-xps 17522  df-mgm 18616  df-mgmhm 18668  df-sgrp 18695  df-mnd 18711  df-grp 18917  df-minusg 18918  df-sbg 18919  df-subg 19104  df-nsg 19105  df-eqg 19106  df-ghm 19194  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-cring 20194  df-oppr 20295  df-dvdsr 20315  df-unit 20316  df-invr 20346  df-rnghm 20394  df-rngim 20395  df-subrng 20504  df-subrg 20528  df-lss 20887  df-sra 21129  df-rgmod 21130  df-lidl 21167  df-2idl 21209  df-cnfld 21314  df-zring 21406
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator