Step | Hyp | Ref
| Expression |
1 | | eqid 2733 |
. . . . 5
⊢
(ℤring ×s
ℤring) = (ℤring ×s
ℤring) |
2 | 1 | pzriprnglem1 46805 |
. . . 4
⊢
(ℤring ×s
ℤring) ∈ Rng |
3 | | eqid 2733 |
. . . . 5
⊢ (ℤ
× {0}) = (ℤ × {0}) |
4 | | eqid 2733 |
. . . . 5
⊢
((ℤring ×s
ℤring) ↾s (ℤ × {0})) =
((ℤring ×s ℤring)
↾s (ℤ × {0})) |
5 | 1, 3, 4 | pzriprnglem8 46812 |
. . . 4
⊢ (ℤ
× {0}) ∈ (2Ideal‘(ℤring
×s ℤring)) |
6 | 2, 5 | pm3.2i 472 |
. . 3
⊢
((ℤring ×s
ℤring) ∈ Rng ∧ (ℤ × {0}) ∈
(2Ideal‘(ℤring ×s
ℤring))) |
7 | 1, 3, 4 | pzriprnglem7 46811 |
. . . 4
⊢
((ℤring ×s
ℤring) ↾s (ℤ × {0})) ∈
Ring |
8 | | eqid 2733 |
. . . . 5
⊢
(1r‘((ℤring ×s
ℤring) ↾s (ℤ × {0}))) =
(1r‘((ℤring ×s
ℤring) ↾s (ℤ ×
{0}))) |
9 | | eqid 2733 |
. . . . 5
⊢
((ℤring ×s
ℤring) ~QG (ℤ × {0})) =
((ℤring ×s ℤring)
~QG (ℤ × {0})) |
10 | | eqid 2733 |
. . . . 5
⊢
((ℤring ×s
ℤring) /s ((ℤring
×s ℤring) ~QG
(ℤ × {0}))) = ((ℤring ×s
ℤring) /s ((ℤring
×s ℤring) ~QG
(ℤ × {0}))) |
11 | 1, 3, 4, 8, 9, 10 | pzriprnglem13 46817 |
. . . 4
⊢
((ℤring ×s
ℤring) /s ((ℤring
×s ℤring) ~QG
(ℤ × {0}))) ∈ Ring |
12 | 7, 11 | pm3.2i 472 |
. . 3
⊢
(((ℤring ×s
ℤring) ↾s (ℤ × {0})) ∈ Ring
∧ ((ℤring ×s
ℤring) /s ((ℤring
×s ℤring) ~QG
(ℤ × {0}))) ∈ Ring) |
13 | | 1z 12592 |
. . . . 5
⊢ 1 ∈
ℤ |
14 | | 1ex 11210 |
. . . . . 6
⊢ 1 ∈
V |
15 | 14 | snid 4665 |
. . . . 5
⊢ 1 ∈
{1} |
16 | 13, 15 | opelxpii 5715 |
. . . 4
⊢ ⟨1,
1⟩ ∈ (ℤ × {1}) |
17 | 1, 3, 4, 8, 9, 10 | pzriprnglem14 46818 |
. . . 4
⊢
(1r‘((ℤring ×s
ℤring) /s ((ℤring
×s ℤring) ~QG
(ℤ × {0})))) = (ℤ × {1}) |
18 | 16, 17 | eleqtrri 2833 |
. . 3
⊢ ⟨1,
1⟩ ∈ (1r‘((ℤring
×s ℤring) /s
((ℤring ×s ℤring)
~QG (ℤ × {0})))) |
19 | | eqid 2733 |
. . . . 5
⊢
(.r‘(ℤring ×s
ℤring)) = (.r‘(ℤring
×s ℤring)) |
20 | | eqid 2733 |
. . . . 5
⊢
(-g‘(ℤring ×s
ℤring)) = (-g‘(ℤring
×s ℤring)) |
21 | | eqid 2733 |
. . . . 5
⊢
(+g‘(ℤring ×s
ℤring)) = (+g‘(ℤring
×s ℤring)) |
22 | 19, 8, 20, 21 | ring2idlqus1 46804 |
. . . 4
⊢
((((ℤring ×s
ℤring) ∈ Rng ∧ (ℤ × {0}) ∈
(2Ideal‘(ℤring ×s
ℤring))) ∧ (((ℤring
×s ℤring) ↾s (ℤ
× {0})) ∈ Ring ∧ ((ℤring
×s ℤring) /s
((ℤring ×s ℤring)
~QG (ℤ × {0}))) ∈ Ring) ∧ ⟨1,
1⟩ ∈ (1r‘((ℤring
×s ℤring) /s
((ℤring ×s ℤring)
~QG (ℤ × {0}))))) → ((ℤring
×s ℤring) ∈ Ring ∧
(1r‘(ℤring ×s
ℤring)) = ((⟨1,
1⟩(-g‘(ℤring ×s
ℤring))((1r‘((ℤring
×s ℤring) ↾s (ℤ
× {0})))(.r‘(ℤring
×s ℤring))⟨1,
1⟩))(+g‘(ℤring
×s
ℤring))(1r‘((ℤring
×s ℤring) ↾s (ℤ
× {0})))))) |
23 | 22 | simprd 497 |
. . 3
⊢
((((ℤring ×s
ℤring) ∈ Rng ∧ (ℤ × {0}) ∈
(2Ideal‘(ℤring ×s
ℤring))) ∧ (((ℤring
×s ℤring) ↾s (ℤ
× {0})) ∈ Ring ∧ ((ℤring
×s ℤring) /s
((ℤring ×s ℤring)
~QG (ℤ × {0}))) ∈ Ring) ∧ ⟨1,
1⟩ ∈ (1r‘((ℤring
×s ℤring) /s
((ℤring ×s ℤring)
~QG (ℤ × {0}))))) →
(1r‘(ℤring ×s
ℤring)) = ((⟨1,
1⟩(-g‘(ℤring ×s
ℤring))((1r‘((ℤring
×s ℤring) ↾s (ℤ
× {0})))(.r‘(ℤring
×s ℤring))⟨1,
1⟩))(+g‘(ℤring
×s
ℤring))(1r‘((ℤring
×s ℤring) ↾s (ℤ
× {0}))))) |
24 | 6, 12, 18, 23 | mp3an 1462 |
. 2
⊢
(1r‘(ℤring ×s
ℤring)) = ((⟨1,
1⟩(-g‘(ℤring ×s
ℤring))((1r‘((ℤring
×s ℤring) ↾s (ℤ
× {0})))(.r‘(ℤring
×s ℤring))⟨1,
1⟩))(+g‘(ℤring
×s
ℤring))(1r‘((ℤring
×s ℤring) ↾s (ℤ
× {0})))) |
25 | 1, 3, 4, 8 | pzriprnglem9 46813 |
. . . . 5
⊢
(1r‘((ℤring ×s
ℤring) ↾s (ℤ × {0}))) = ⟨1,
0⟩ |
26 | 25 | oveq1i 7419 |
. . . 4
⊢
((1r‘((ℤring
×s ℤring) ↾s (ℤ
× {0})))(.r‘(ℤring
×s ℤring))⟨1, 1⟩) =
(⟨1, 0⟩(.r‘(ℤring
×s ℤring))⟨1,
1⟩) |
27 | 26 | oveq2i 7420 |
. . 3
⊢ (⟨1,
1⟩(-g‘(ℤring ×s
ℤring))((1r‘((ℤring
×s ℤring) ↾s (ℤ
× {0})))(.r‘(ℤring
×s ℤring))⟨1, 1⟩)) =
(⟨1, 1⟩(-g‘(ℤring
×s ℤring))(⟨1,
0⟩(.r‘(ℤring ×s
ℤring))⟨1, 1⟩)) |
28 | 27, 25 | oveq12i 7421 |
. 2
⊢
((⟨1, 1⟩(-g‘(ℤring
×s
ℤring))((1r‘((ℤring
×s ℤring) ↾s (ℤ
× {0})))(.r‘(ℤring
×s ℤring))⟨1,
1⟩))(+g‘(ℤring
×s
ℤring))(1r‘((ℤring
×s ℤring) ↾s (ℤ
× {0})))) = ((⟨1,
1⟩(-g‘(ℤring ×s
ℤring))(⟨1,
0⟩(.r‘(ℤring ×s
ℤring))⟨1,
1⟩))(+g‘(ℤring
×s ℤring))⟨1,
0⟩) |
29 | | zringring 21020 |
. . . . . . 7
⊢
ℤring ∈ Ring |
30 | | zringbas 21023 |
. . . . . . . 8
⊢ ℤ =
(Base‘ℤring) |
31 | | id 22 |
. . . . . . . 8
⊢
(ℤring ∈ Ring → ℤring ∈
Ring) |
32 | 13 | a1i 11 |
. . . . . . . 8
⊢
(ℤring ∈ Ring → 1 ∈
ℤ) |
33 | | 0zd 12570 |
. . . . . . . 8
⊢
(ℤring ∈ Ring → 0 ∈
ℤ) |
34 | | zmulcl 12611 |
. . . . . . . . . 10
⊢ ((1
∈ ℤ ∧ 1 ∈ ℤ) → (1 · 1) ∈
ℤ) |
35 | 13, 13, 34 | mp2an 691 |
. . . . . . . . 9
⊢ (1
· 1) ∈ ℤ |
36 | 35 | a1i 11 |
. . . . . . . 8
⊢
(ℤring ∈ Ring → (1 · 1) ∈
ℤ) |
37 | | zringmulr 21027 |
. . . . . . . . . . . 12
⊢ ·
= (.r‘ℤring) |
38 | 37 | eqcomi 2742 |
. . . . . . . . . . 11
⊢
(.r‘ℤring) = · |
39 | 38 | oveqi 7422 |
. . . . . . . . . 10
⊢
(0(.r‘ℤring)1) = (0 ·
1) |
40 | | 0z 12569 |
. . . . . . . . . . 11
⊢ 0 ∈
ℤ |
41 | | zmulcl 12611 |
. . . . . . . . . . 11
⊢ ((0
∈ ℤ ∧ 1 ∈ ℤ) → (0 · 1) ∈
ℤ) |
42 | 40, 13, 41 | mp2an 691 |
. . . . . . . . . 10
⊢ (0
· 1) ∈ ℤ |
43 | 39, 42 | eqeltri 2830 |
. . . . . . . . 9
⊢
(0(.r‘ℤring)1) ∈
ℤ |
44 | 43 | a1i 11 |
. . . . . . . 8
⊢
(ℤring ∈ Ring →
(0(.r‘ℤring)1) ∈
ℤ) |
45 | | eqid 2733 |
. . . . . . . 8
⊢
(.r‘ℤring) =
(.r‘ℤring) |
46 | 1, 30, 30, 31, 31, 32, 33, 32, 32, 36, 44, 37, 45, 19 | xpsmul 17521 |
. . . . . . 7
⊢
(ℤring ∈ Ring → (⟨1,
0⟩(.r‘(ℤring ×s
ℤring))⟨1, 1⟩) = ⟨(1 · 1),
(0(.r‘ℤring)1)⟩) |
47 | 29, 46 | ax-mp 5 |
. . . . . 6
⊢ (⟨1,
0⟩(.r‘(ℤring ×s
ℤring))⟨1, 1⟩) = ⟨(1 · 1),
(0(.r‘ℤring)1)⟩ |
48 | 47 | oveq2i 7420 |
. . . . 5
⊢ (⟨1,
1⟩(-g‘(ℤring ×s
ℤring))(⟨1,
0⟩(.r‘(ℤring ×s
ℤring))⟨1, 1⟩)) = (⟨1,
1⟩(-g‘(ℤring ×s
ℤring))⟨(1 · 1),
(0(.r‘ℤring)1)⟩) |
49 | | 1t1e1 12374 |
. . . . . . 7
⊢ (1
· 1) = 1 |
50 | | ax-1cn 11168 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
51 | 50 | mul02i 11403 |
. . . . . . . 8
⊢ (0
· 1) = 0 |
52 | 39, 51 | eqtri 2761 |
. . . . . . 7
⊢
(0(.r‘ℤring)1) = 0 |
53 | 49, 52 | opeq12i 4879 |
. . . . . 6
⊢ ⟨(1
· 1), (0(.r‘ℤring)1)⟩ = ⟨1,
0⟩ |
54 | 53 | oveq2i 7420 |
. . . . 5
⊢ (⟨1,
1⟩(-g‘(ℤring ×s
ℤring))⟨(1 · 1),
(0(.r‘ℤring)1)⟩) = (⟨1,
1⟩(-g‘(ℤring ×s
ℤring))⟨1, 0⟩) |
55 | | zringgrp 21022 |
. . . . . . . 8
⊢
ℤring ∈ Grp |
56 | 55 | a1i 11 |
. . . . . . 7
⊢ (1 ∈
ℤ → ℤring ∈ Grp) |
57 | | id 22 |
. . . . . . 7
⊢ (1 ∈
ℤ → 1 ∈ ℤ) |
58 | | 0zd 12570 |
. . . . . . 7
⊢ (1 ∈
ℤ → 0 ∈ ℤ) |
59 | | eqid 2733 |
. . . . . . 7
⊢
(-g‘ℤring) =
(-g‘ℤring) |
60 | 1, 30, 30, 56, 56, 57, 57, 57, 58, 59, 59, 20 | xpsgrpsub 18944 |
. . . . . 6
⊢ (1 ∈
ℤ → (⟨1, 1⟩(-g‘(ℤring
×s ℤring))⟨1, 0⟩) =
⟨(1(-g‘ℤring)1),
(1(-g‘ℤring)0)⟩) |
61 | 13, 60 | ax-mp 5 |
. . . . 5
⊢ (⟨1,
1⟩(-g‘(ℤring ×s
ℤring))⟨1, 0⟩) =
⟨(1(-g‘ℤring)1),
(1(-g‘ℤring)0)⟩ |
62 | 48, 54, 61 | 3eqtri 2765 |
. . . 4
⊢ (⟨1,
1⟩(-g‘(ℤring ×s
ℤring))(⟨1,
0⟩(.r‘(ℤring ×s
ℤring))⟨1, 1⟩)) =
⟨(1(-g‘ℤring)1),
(1(-g‘ℤring)0)⟩ |
63 | 62 | oveq1i 7419 |
. . 3
⊢
((⟨1, 1⟩(-g‘(ℤring
×s ℤring))(⟨1,
0⟩(.r‘(ℤring ×s
ℤring))⟨1,
1⟩))(+g‘(ℤring
×s ℤring))⟨1, 0⟩) =
(⟨(1(-g‘ℤring)1),
(1(-g‘ℤring)0)⟩(+g‘(ℤring
×s ℤring))⟨1, 0⟩) |
64 | 59 | zringsub 21025 |
. . . . . . 7
⊢ ((1
∈ ℤ ∧ 1 ∈ ℤ) →
(1(-g‘ℤring)1) = (1 −
1)) |
65 | 13, 13, 64 | mp2an 691 |
. . . . . 6
⊢
(1(-g‘ℤring)1) = (1 −
1) |
66 | | 1m1e0 12284 |
. . . . . 6
⊢ (1
− 1) = 0 |
67 | 65, 66 | eqtri 2761 |
. . . . 5
⊢
(1(-g‘ℤring)1) = 0 |
68 | 59 | zringsub 21025 |
. . . . . 6
⊢ ((1
∈ ℤ ∧ 0 ∈ ℤ) →
(1(-g‘ℤring)0) = (1 −
0)) |
69 | 13, 40, 68 | mp2an 691 |
. . . . 5
⊢
(1(-g‘ℤring)0) = (1 −
0) |
70 | 67, 69 | opeq12i 4879 |
. . . 4
⊢
⟨(1(-g‘ℤring)1),
(1(-g‘ℤring)0)⟩ = ⟨0, (1 −
0)⟩ |
71 | 70 | oveq1i 7419 |
. . 3
⊢
(⟨(1(-g‘ℤring)1),
(1(-g‘ℤring)0)⟩(+g‘(ℤring
×s ℤring))⟨1, 0⟩) = (⟨0, (1 −
0)⟩(+g‘(ℤring ×s
ℤring))⟨1, 0⟩) |
72 | | 1m0e1 12333 |
. . . . . 6
⊢ (1
− 0) = 1 |
73 | 72 | opeq2i 4878 |
. . . . 5
⊢ ⟨0,
(1 − 0)⟩ = ⟨0, 1⟩ |
74 | 73 | oveq1i 7419 |
. . . 4
⊢ (⟨0,
(1 − 0)⟩(+g‘(ℤring
×s ℤring))⟨1, 0⟩) =
(⟨0, 1⟩(+g‘(ℤring
×s ℤring))⟨1,
0⟩) |
75 | 29 | a1i 11 |
. . . . . 6
⊢ (1 ∈
ℤ → ℤring ∈ Ring) |
76 | 58, 57 | zaddcld 12670 |
. . . . . 6
⊢ (1 ∈
ℤ → (0 + 1) ∈ ℤ) |
77 | 57, 58 | zaddcld 12670 |
. . . . . 6
⊢ (1 ∈
ℤ → (1 + 0) ∈ ℤ) |
78 | | zringplusg 21024 |
. . . . . 6
⊢ + =
(+g‘ℤring) |
79 | 1, 30, 30, 75, 75, 58, 57, 57, 58, 76, 77, 78, 78, 21 | xpsadd 17520 |
. . . . 5
⊢ (1 ∈
ℤ → (⟨0, 1⟩(+g‘(ℤring
×s ℤring))⟨1, 0⟩) = ⟨(0
+ 1), (1 + 0)⟩) |
80 | 13, 79 | ax-mp 5 |
. . . 4
⊢ (⟨0,
1⟩(+g‘(ℤring ×s
ℤring))⟨1, 0⟩) = ⟨(0 + 1), (1 +
0)⟩ |
81 | | 0p1e1 12334 |
. . . . 5
⊢ (0 + 1) =
1 |
82 | | 1p0e1 12336 |
. . . . 5
⊢ (1 + 0) =
1 |
83 | 81, 82 | opeq12i 4879 |
. . . 4
⊢ ⟨(0
+ 1), (1 + 0)⟩ = ⟨1, 1⟩ |
84 | 74, 80, 83 | 3eqtri 2765 |
. . 3
⊢ (⟨0,
(1 − 0)⟩(+g‘(ℤring
×s ℤring))⟨1, 0⟩) = ⟨1,
1⟩ |
85 | 63, 71, 84 | 3eqtri 2765 |
. 2
⊢
((⟨1, 1⟩(-g‘(ℤring
×s ℤring))(⟨1,
0⟩(.r‘(ℤring ×s
ℤring))⟨1,
1⟩))(+g‘(ℤring
×s ℤring))⟨1, 0⟩) = ⟨1,
1⟩ |
86 | 24, 28, 85 | 3eqtri 2765 |
1
⊢
(1r‘(ℤring ×s
ℤring)) = ⟨1, 1⟩ |