MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprng1ALT Structured version   Visualization version   GIF version

Theorem pzriprng1ALT 21383
Description: The ring unity of the ring (ℤring ×sring) constructed from the ring unity of the two-sided ideal (ℤ × {0}) and the ring unity of the quotient of the ring and the ideal (using ring2idlqus1 21172). (Contributed by AV, 24-Mar-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
pzriprng1ALT (1r‘(ℤring ×sring)) = ⟨1, 1⟩

Proof of Theorem pzriprng1ALT
StepHypRef Expression
1 eqid 2726 . . . . 5 (ℤring ×sring) = (ℤring ×sring)
21pzriprnglem1 21368 . . . 4 (ℤring ×sring) ∈ Rng
3 eqid 2726 . . . . 5 (ℤ × {0}) = (ℤ × {0})
4 eqid 2726 . . . . 5 ((ℤring ×sring) ↾s (ℤ × {0})) = ((ℤring ×sring) ↾s (ℤ × {0}))
51, 3, 4pzriprnglem8 21375 . . . 4 (ℤ × {0}) ∈ (2Ideal‘(ℤring ×sring))
62, 5pm3.2i 470 . . 3 ((ℤring ×sring) ∈ Rng ∧ (ℤ × {0}) ∈ (2Ideal‘(ℤring ×sring)))
71, 3, 4pzriprnglem7 21374 . . . 4 ((ℤring ×sring) ↾s (ℤ × {0})) ∈ Ring
8 eqid 2726 . . . . 5 (1r‘((ℤring ×sring) ↾s (ℤ × {0}))) = (1r‘((ℤring ×sring) ↾s (ℤ × {0})))
9 eqid 2726 . . . . 5 ((ℤring ×sring) ~QG (ℤ × {0})) = ((ℤring ×sring) ~QG (ℤ × {0}))
10 eqid 2726 . . . . 5 ((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0}))) = ((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0})))
111, 3, 4, 8, 9, 10pzriprnglem13 21380 . . . 4 ((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0}))) ∈ Ring
127, 11pm3.2i 470 . . 3 (((ℤring ×sring) ↾s (ℤ × {0})) ∈ Ring ∧ ((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0}))) ∈ Ring)
13 1z 12596 . . . . 5 1 ∈ ℤ
14 1ex 11214 . . . . . 6 1 ∈ V
1514snid 4659 . . . . 5 1 ∈ {1}
1613, 15opelxpii 5707 . . . 4 ⟨1, 1⟩ ∈ (ℤ × {1})
171, 3, 4, 8, 9, 10pzriprnglem14 21381 . . . 4 (1r‘((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0})))) = (ℤ × {1})
1816, 17eleqtrri 2826 . . 3 ⟨1, 1⟩ ∈ (1r‘((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0}))))
19 eqid 2726 . . . . 5 (.r‘(ℤring ×sring)) = (.r‘(ℤring ×sring))
20 eqid 2726 . . . . 5 (-g‘(ℤring ×sring)) = (-g‘(ℤring ×sring))
21 eqid 2726 . . . . 5 (+g‘(ℤring ×sring)) = (+g‘(ℤring ×sring))
2219, 8, 20, 21ring2idlqus1 21172 . . . 4 ((((ℤring ×sring) ∈ Rng ∧ (ℤ × {0}) ∈ (2Ideal‘(ℤring ×sring))) ∧ (((ℤring ×sring) ↾s (ℤ × {0})) ∈ Ring ∧ ((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0}))) ∈ Ring) ∧ ⟨1, 1⟩ ∈ (1r‘((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0}))))) → ((ℤring ×sring) ∈ Ring ∧ (1r‘(ℤring ×sring)) = ((⟨1, 1⟩(-g‘(ℤring ×sring))((1r‘((ℤring ×sring) ↾s (ℤ × {0})))(.r‘(ℤring ×sring))⟨1, 1⟩))(+g‘(ℤring ×sring))(1r‘((ℤring ×sring) ↾s (ℤ × {0}))))))
2322simprd 495 . . 3 ((((ℤring ×sring) ∈ Rng ∧ (ℤ × {0}) ∈ (2Ideal‘(ℤring ×sring))) ∧ (((ℤring ×sring) ↾s (ℤ × {0})) ∈ Ring ∧ ((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0}))) ∈ Ring) ∧ ⟨1, 1⟩ ∈ (1r‘((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0}))))) → (1r‘(ℤring ×sring)) = ((⟨1, 1⟩(-g‘(ℤring ×sring))((1r‘((ℤring ×sring) ↾s (ℤ × {0})))(.r‘(ℤring ×sring))⟨1, 1⟩))(+g‘(ℤring ×sring))(1r‘((ℤring ×sring) ↾s (ℤ × {0})))))
246, 12, 18, 23mp3an 1457 . 2 (1r‘(ℤring ×sring)) = ((⟨1, 1⟩(-g‘(ℤring ×sring))((1r‘((ℤring ×sring) ↾s (ℤ × {0})))(.r‘(ℤring ×sring))⟨1, 1⟩))(+g‘(ℤring ×sring))(1r‘((ℤring ×sring) ↾s (ℤ × {0}))))
251, 3, 4, 8pzriprnglem9 21376 . . . . 5 (1r‘((ℤring ×sring) ↾s (ℤ × {0}))) = ⟨1, 0⟩
2625oveq1i 7415 . . . 4 ((1r‘((ℤring ×sring) ↾s (ℤ × {0})))(.r‘(ℤring ×sring))⟨1, 1⟩) = (⟨1, 0⟩(.r‘(ℤring ×sring))⟨1, 1⟩)
2726oveq2i 7416 . . 3 (⟨1, 1⟩(-g‘(ℤring ×sring))((1r‘((ℤring ×sring) ↾s (ℤ × {0})))(.r‘(ℤring ×sring))⟨1, 1⟩)) = (⟨1, 1⟩(-g‘(ℤring ×sring))(⟨1, 0⟩(.r‘(ℤring ×sring))⟨1, 1⟩))
2827, 25oveq12i 7417 . 2 ((⟨1, 1⟩(-g‘(ℤring ×sring))((1r‘((ℤring ×sring) ↾s (ℤ × {0})))(.r‘(ℤring ×sring))⟨1, 1⟩))(+g‘(ℤring ×sring))(1r‘((ℤring ×sring) ↾s (ℤ × {0})))) = ((⟨1, 1⟩(-g‘(ℤring ×sring))(⟨1, 0⟩(.r‘(ℤring ×sring))⟨1, 1⟩))(+g‘(ℤring ×sring))⟨1, 0⟩)
29 zringring 21336 . . . . . . 7 ring ∈ Ring
30 zringbas 21340 . . . . . . . 8 ℤ = (Base‘ℤring)
31 id 22 . . . . . . . 8 (ℤring ∈ Ring → ℤring ∈ Ring)
3213a1i 11 . . . . . . . 8 (ℤring ∈ Ring → 1 ∈ ℤ)
33 0zd 12574 . . . . . . . 8 (ℤring ∈ Ring → 0 ∈ ℤ)
34 zmulcl 12615 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 1 ∈ ℤ) → (1 · 1) ∈ ℤ)
3513, 13, 34mp2an 689 . . . . . . . . 9 (1 · 1) ∈ ℤ
3635a1i 11 . . . . . . . 8 (ℤring ∈ Ring → (1 · 1) ∈ ℤ)
37 zringmulr 21344 . . . . . . . . . . . 12 · = (.r‘ℤring)
3837eqcomi 2735 . . . . . . . . . . 11 (.r‘ℤring) = ·
3938oveqi 7418 . . . . . . . . . 10 (0(.r‘ℤring)1) = (0 · 1)
40 0z 12573 . . . . . . . . . . 11 0 ∈ ℤ
41 zmulcl 12615 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (0 · 1) ∈ ℤ)
4240, 13, 41mp2an 689 . . . . . . . . . 10 (0 · 1) ∈ ℤ
4339, 42eqeltri 2823 . . . . . . . . 9 (0(.r‘ℤring)1) ∈ ℤ
4443a1i 11 . . . . . . . 8 (ℤring ∈ Ring → (0(.r‘ℤring)1) ∈ ℤ)
45 eqid 2726 . . . . . . . 8 (.r‘ℤring) = (.r‘ℤring)
461, 30, 30, 31, 31, 32, 33, 32, 32, 36, 44, 37, 45, 19xpsmul 17530 . . . . . . 7 (ℤring ∈ Ring → (⟨1, 0⟩(.r‘(ℤring ×sring))⟨1, 1⟩) = ⟨(1 · 1), (0(.r‘ℤring)1)⟩)
4729, 46ax-mp 5 . . . . . 6 (⟨1, 0⟩(.r‘(ℤring ×sring))⟨1, 1⟩) = ⟨(1 · 1), (0(.r‘ℤring)1)⟩
4847oveq2i 7416 . . . . 5 (⟨1, 1⟩(-g‘(ℤring ×sring))(⟨1, 0⟩(.r‘(ℤring ×sring))⟨1, 1⟩)) = (⟨1, 1⟩(-g‘(ℤring ×sring))⟨(1 · 1), (0(.r‘ℤring)1)⟩)
49 1t1e1 12378 . . . . . . 7 (1 · 1) = 1
50 ax-1cn 11170 . . . . . . . . 9 1 ∈ ℂ
5150mul02i 11407 . . . . . . . 8 (0 · 1) = 0
5239, 51eqtri 2754 . . . . . . 7 (0(.r‘ℤring)1) = 0
5349, 52opeq12i 4873 . . . . . 6 ⟨(1 · 1), (0(.r‘ℤring)1)⟩ = ⟨1, 0⟩
5453oveq2i 7416 . . . . 5 (⟨1, 1⟩(-g‘(ℤring ×sring))⟨(1 · 1), (0(.r‘ℤring)1)⟩) = (⟨1, 1⟩(-g‘(ℤring ×sring))⟨1, 0⟩)
55 zringgrp 21339 . . . . . . . 8 ring ∈ Grp
5655a1i 11 . . . . . . 7 (1 ∈ ℤ → ℤring ∈ Grp)
57 id 22 . . . . . . 7 (1 ∈ ℤ → 1 ∈ ℤ)
58 0zd 12574 . . . . . . 7 (1 ∈ ℤ → 0 ∈ ℤ)
59 eqid 2726 . . . . . . 7 (-g‘ℤring) = (-g‘ℤring)
601, 30, 30, 56, 56, 57, 57, 57, 58, 59, 59, 20xpsgrpsub 18989 . . . . . 6 (1 ∈ ℤ → (⟨1, 1⟩(-g‘(ℤring ×sring))⟨1, 0⟩) = ⟨(1(-g‘ℤring)1), (1(-g‘ℤring)0)⟩)
6113, 60ax-mp 5 . . . . 5 (⟨1, 1⟩(-g‘(ℤring ×sring))⟨1, 0⟩) = ⟨(1(-g‘ℤring)1), (1(-g‘ℤring)0)⟩
6248, 54, 613eqtri 2758 . . . 4 (⟨1, 1⟩(-g‘(ℤring ×sring))(⟨1, 0⟩(.r‘(ℤring ×sring))⟨1, 1⟩)) = ⟨(1(-g‘ℤring)1), (1(-g‘ℤring)0)⟩
6362oveq1i 7415 . . 3 ((⟨1, 1⟩(-g‘(ℤring ×sring))(⟨1, 0⟩(.r‘(ℤring ×sring))⟨1, 1⟩))(+g‘(ℤring ×sring))⟨1, 0⟩) = (⟨(1(-g‘ℤring)1), (1(-g‘ℤring)0)⟩(+g‘(ℤring ×sring))⟨1, 0⟩)
6459zringsub 21342 . . . . . . 7 ((1 ∈ ℤ ∧ 1 ∈ ℤ) → (1(-g‘ℤring)1) = (1 − 1))
6513, 13, 64mp2an 689 . . . . . 6 (1(-g‘ℤring)1) = (1 − 1)
66 1m1e0 12288 . . . . . 6 (1 − 1) = 0
6765, 66eqtri 2754 . . . . 5 (1(-g‘ℤring)1) = 0
6859zringsub 21342 . . . . . 6 ((1 ∈ ℤ ∧ 0 ∈ ℤ) → (1(-g‘ℤring)0) = (1 − 0))
6913, 40, 68mp2an 689 . . . . 5 (1(-g‘ℤring)0) = (1 − 0)
7067, 69opeq12i 4873 . . . 4 ⟨(1(-g‘ℤring)1), (1(-g‘ℤring)0)⟩ = ⟨0, (1 − 0)⟩
7170oveq1i 7415 . . 3 (⟨(1(-g‘ℤring)1), (1(-g‘ℤring)0)⟩(+g‘(ℤring ×sring))⟨1, 0⟩) = (⟨0, (1 − 0)⟩(+g‘(ℤring ×sring))⟨1, 0⟩)
72 1m0e1 12337 . . . . . 6 (1 − 0) = 1
7372opeq2i 4872 . . . . 5 ⟨0, (1 − 0)⟩ = ⟨0, 1⟩
7473oveq1i 7415 . . . 4 (⟨0, (1 − 0)⟩(+g‘(ℤring ×sring))⟨1, 0⟩) = (⟨0, 1⟩(+g‘(ℤring ×sring))⟨1, 0⟩)
7529a1i 11 . . . . . 6 (1 ∈ ℤ → ℤring ∈ Ring)
7658, 57zaddcld 12674 . . . . . 6 (1 ∈ ℤ → (0 + 1) ∈ ℤ)
7757, 58zaddcld 12674 . . . . . 6 (1 ∈ ℤ → (1 + 0) ∈ ℤ)
78 zringplusg 21341 . . . . . 6 + = (+g‘ℤring)
791, 30, 30, 75, 75, 58, 57, 57, 58, 76, 77, 78, 78, 21xpsadd 17529 . . . . 5 (1 ∈ ℤ → (⟨0, 1⟩(+g‘(ℤring ×sring))⟨1, 0⟩) = ⟨(0 + 1), (1 + 0)⟩)
8013, 79ax-mp 5 . . . 4 (⟨0, 1⟩(+g‘(ℤring ×sring))⟨1, 0⟩) = ⟨(0 + 1), (1 + 0)⟩
81 0p1e1 12338 . . . . 5 (0 + 1) = 1
82 1p0e1 12340 . . . . 5 (1 + 0) = 1
8381, 82opeq12i 4873 . . . 4 ⟨(0 + 1), (1 + 0)⟩ = ⟨1, 1⟩
8474, 80, 833eqtri 2758 . . 3 (⟨0, (1 − 0)⟩(+g‘(ℤring ×sring))⟨1, 0⟩) = ⟨1, 1⟩
8563, 71, 843eqtri 2758 . 2 ((⟨1, 1⟩(-g‘(ℤring ×sring))(⟨1, 0⟩(.r‘(ℤring ×sring))⟨1, 1⟩))(+g‘(ℤring ×sring))⟨1, 0⟩) = ⟨1, 1⟩
8624, 28, 853eqtri 2758 1 (1r‘(ℤring ×sring)) = ⟨1, 1⟩
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1084   = wceq 1533  wcel 2098  {csn 4623  cop 4629   × cxp 5667  cfv 6537  (class class class)co 7405  0cc0 11112  1c1 11113   + caddc 11115   · cmul 11117  cmin 11448  cz 12562  s cress 17182  +gcplusg 17206  .rcmulr 17207   /s cqus 17460   ×s cxps 17461  Grpcgrp 18863  -gcsg 18865   ~QG cqg 19049  Rngcrng 20057  1rcur 20086  Ringcrg 20138  2Idealc2idl 21106  ringczring 21333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-tpos 8212  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-2o 8468  df-er 8705  df-ec 8707  df-qs 8711  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13491  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-mulr 17220  df-starv 17221  df-sca 17222  df-vsca 17223  df-ip 17224  df-tset 17225  df-ple 17226  df-ds 17228  df-unif 17229  df-hom 17230  df-cco 17231  df-0g 17396  df-prds 17402  df-imas 17463  df-qus 17464  df-xps 17465  df-mgm 18573  df-mgmhm 18625  df-sgrp 18652  df-mnd 18668  df-grp 18866  df-minusg 18867  df-sbg 18868  df-subg 19050  df-nsg 19051  df-eqg 19052  df-ghm 19139  df-cmn 19702  df-abl 19703  df-mgp 20040  df-rng 20058  df-ur 20087  df-ring 20140  df-cring 20141  df-oppr 20236  df-dvdsr 20259  df-unit 20260  df-invr 20290  df-rnghm 20338  df-rngim 20339  df-subrng 20446  df-subrg 20471  df-lss 20779  df-sra 21021  df-rgmod 21022  df-lidl 21067  df-2idl 21107  df-cnfld 21241  df-zring 21334
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator