Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opelxpd | Structured version Visualization version GIF version |
Description: Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
opelxpd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
opelxpd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
Ref | Expression |
---|---|
opelxpd | ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
2 | opelxpd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
3 | opelxpi 5627 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 〈cop 4568 × cxp 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-opab 5138 df-xp 5596 |
This theorem is referenced by: otel3xp 5634 opabssxpd 5635 fpr2g 7096 fliftrel 7188 elovimad 7332 el2xptp0 7887 oprab2co 7946 1stconst 7949 2ndconst 7950 curry2 7956 fsplitfpar 7968 offsplitfpar 7969 fnwelem 7981 xpf1o 8935 xpmapenlem 8940 unxpdomlem3 9038 fseqenlem1 9789 fseqenlem2 9790 iundom2g 10305 ordpipq 10707 addpqf 10709 mulpqf 10711 recmulnq 10729 ltexnq 10740 axmulf 10911 cnrecnv 14885 ruclem1 15949 eucalgf 16297 qredeu 16372 crth 16488 phimullem 16489 prmreclem3 16628 setsstruct2 16884 imasaddflem 17250 xpsaddlem 17293 xpsvsca 17297 xpsle 17299 comffval 17417 oppccofval 17435 isoval 17486 brcic 17519 funcf2 17592 idfu2nd 17601 resf2nd 17619 wunfunc 17623 wunfuncOLD 17624 homaval 17755 setcco 17807 catcco 17829 estrcco 17855 xpcco 17909 xpchom2 17912 xpcco2 17913 xpccatid 17914 prfcl 17929 prf1st 17930 prf2nd 17931 evlf2 17945 curf1cl 17955 curf2cl 17958 curfcl 17959 uncf1 17963 uncf2 17964 uncfcurf 17966 diag11 17970 diag12 17971 diag2 17972 curf2ndf 17974 hof2fval 17982 yonedalem21 18000 yonedalem22 18005 yonedalem3b 18006 yonffthlem 18009 latcl2 18163 lsmhash 19320 frgpuplem 19387 mdetrlin 21760 mdetrsca 21761 txcls 22764 txcnp 22780 txcnmpt 22784 txdis1cn 22795 txlly 22796 txnlly 22797 txlm 22808 lmcn2 22809 txkgen 22812 xkococnlem 22819 txhmeo 22963 ptuncnv 22967 txflf 23166 flfcnp2 23167 tmdcn2 23249 qustgplem 23281 tsmsadd 23307 imasdsf1olem 23535 xpsdsval 23543 comet 23678 metustid 23719 metustexhalf 23721 metuel2 23730 tngnm 23824 cnheiborlem 24126 bcthlem5 24501 ovollb2lem 24661 ovolctb 24663 ovoliunlem2 24676 ovolshftlem1 24682 ovolscalem1 24686 ovolicc1 24689 ioombl1lem1 24731 dyadf 24764 itg1addlem4 24872 itg1addlem4OLD 24873 limccnp2 25065 dvaddbr 25111 dvmulbr 25112 dvcobr 25119 lhop1lem 25186 cxpcn3 25910 dvdsmulf1o 26352 addsqnreup 26600 tgjustc1 26845 tgjustc2 26846 tgelrnln 27000 numclwwlk1lem2f 28728 ofresid 30988 fsuppcurry1 31069 fsuppcurry2 31070 gsumpart 31324 prsdm 31873 prsrn 31874 esum2dlem 32069 hgt750lemb 32645 cvmlift2lem10 33283 goelel3xp 33319 sat1el2xp 33350 fmla0xp 33354 prv1n 33402 addsval 34135 pprodss4v 34195 poimirlem3 35789 poimirlem4 35790 poimirlem17 35803 poimirlem20 35806 mblfinlem2 35824 projf1o 42743 ovolval4lem1 44194 ovolval5lem2 44198 |
Copyright terms: Public domain | W3C validator |