Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opelxpd | Structured version Visualization version GIF version |
Description: Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
opelxpd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
opelxpd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
Ref | Expression |
---|---|
opelxpd | ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
2 | opelxpd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
3 | opelxpi 5626 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 〈cop 4573 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-opab 5142 df-xp 5595 |
This theorem is referenced by: otel3xp 5633 opabssxpd 5634 fpr2g 7082 fliftrel 7173 elovimad 7317 el2xptp0 7869 oprab2co 7926 1stconst 7929 2ndconst 7930 curry2 7936 fsplitfpar 7948 offsplitfpar 7949 fnwelem 7961 xpf1o 8906 xpmapenlem 8911 unxpdomlem3 9005 fseqenlem1 9779 fseqenlem2 9780 iundom2g 10295 ordpipq 10697 addpqf 10699 mulpqf 10701 recmulnq 10719 ltexnq 10730 axmulf 10901 cnrecnv 14872 ruclem1 15936 eucalgf 16284 qredeu 16359 crth 16475 phimullem 16476 prmreclem3 16615 setsstruct2 16871 imasaddflem 17237 xpsaddlem 17280 xpsvsca 17284 xpsle 17286 comffval 17404 oppccofval 17422 isoval 17473 brcic 17506 funcf2 17579 idfu2nd 17588 resf2nd 17606 wunfunc 17610 wunfuncOLD 17611 homaval 17742 setcco 17794 catcco 17816 estrcco 17842 xpcco 17896 xpchom2 17899 xpcco2 17900 xpccatid 17901 prfcl 17916 prf1st 17917 prf2nd 17918 evlf2 17932 curf1cl 17942 curf2cl 17945 curfcl 17946 uncf1 17950 uncf2 17951 uncfcurf 17953 diag11 17957 diag12 17958 diag2 17959 curf2ndf 17961 hof2fval 17969 yonedalem21 17987 yonedalem22 17992 yonedalem3b 17993 yonffthlem 17996 latcl2 18150 lsmhash 19307 frgpuplem 19374 mdetrlin 21747 mdetrsca 21748 txcls 22751 txcnp 22767 txcnmpt 22771 txdis1cn 22782 txlly 22783 txnlly 22784 txlm 22795 lmcn2 22796 txkgen 22799 xkococnlem 22806 txhmeo 22950 ptuncnv 22954 txflf 23153 flfcnp2 23154 tmdcn2 23236 qustgplem 23268 tsmsadd 23294 imasdsf1olem 23522 xpsdsval 23530 comet 23665 metustid 23706 metustexhalf 23708 metuel2 23717 tngnm 23811 cnheiborlem 24113 bcthlem5 24488 ovollb2lem 24648 ovolctb 24650 ovoliunlem2 24663 ovolshftlem1 24669 ovolscalem1 24673 ovolicc1 24676 ioombl1lem1 24718 dyadf 24751 itg1addlem4 24859 itg1addlem4OLD 24860 limccnp2 25052 dvaddbr 25098 dvmulbr 25099 dvcobr 25106 lhop1lem 25173 cxpcn3 25897 dvdsmulf1o 26339 addsqnreup 26587 tgjustc1 26832 tgjustc2 26833 tgelrnln 26987 numclwwlk1lem2f 28713 ofresid 30973 fsuppcurry1 31054 fsuppcurry2 31055 gsumpart 31309 prsdm 31858 prsrn 31859 esum2dlem 32054 hgt750lemb 32630 cvmlift2lem10 33268 goelel3xp 33304 sat1el2xp 33335 fmla0xp 33339 prv1n 33387 addsval 34120 pprodss4v 34180 poimirlem3 35774 poimirlem4 35775 poimirlem17 35788 poimirlem20 35791 mblfinlem2 35809 projf1o 42704 ovolval4lem1 44156 ovolval5lem2 44160 |
Copyright terms: Public domain | W3C validator |