Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opelxpd | Structured version Visualization version GIF version |
Description: Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
opelxpd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
opelxpd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
Ref | Expression |
---|---|
opelxpd | ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
2 | opelxpd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
3 | opelxpi 5617 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 〈cop 4564 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-xp 5586 |
This theorem is referenced by: otel3xp 5624 opabssxpd 5625 fpr2g 7069 fliftrel 7159 elovimad 7303 el2xptp0 7851 oprab2co 7908 1stconst 7911 2ndconst 7912 curry2 7918 fsplitfpar 7930 offsplitfpar 7931 fnwelem 7943 xpf1o 8875 xpmapenlem 8880 unxpdomlem3 8958 fseqenlem1 9711 fseqenlem2 9712 iundom2g 10227 ordpipq 10629 addpqf 10631 mulpqf 10633 recmulnq 10651 ltexnq 10662 axmulf 10833 cnrecnv 14804 ruclem1 15868 eucalgf 16216 qredeu 16291 crth 16407 phimullem 16408 prmreclem3 16547 setsstruct2 16803 imasaddflem 17158 xpsaddlem 17201 xpsvsca 17205 xpsle 17207 comffval 17325 oppccofval 17343 isoval 17394 brcic 17427 funcf2 17499 idfu2nd 17508 resf2nd 17526 wunfunc 17530 wunfuncOLD 17531 homaval 17662 setcco 17714 catcco 17736 estrcco 17762 xpcco 17816 xpchom2 17819 xpcco2 17820 xpccatid 17821 prfcl 17836 prf1st 17837 prf2nd 17838 evlf2 17852 curf1cl 17862 curf2cl 17865 curfcl 17866 uncf1 17870 uncf2 17871 uncfcurf 17873 diag11 17877 diag12 17878 diag2 17879 curf2ndf 17881 hof2fval 17889 yonedalem21 17907 yonedalem22 17912 yonedalem3b 17913 yonffthlem 17916 latcl2 18069 lsmhash 19226 frgpuplem 19293 mdetrlin 21659 mdetrsca 21660 txcls 22663 txcnp 22679 txcnmpt 22683 txdis1cn 22694 txlly 22695 txnlly 22696 txlm 22707 lmcn2 22708 txkgen 22711 xkococnlem 22718 txhmeo 22862 ptuncnv 22866 txflf 23065 flfcnp2 23066 tmdcn2 23148 qustgplem 23180 tsmsadd 23206 imasdsf1olem 23434 xpsdsval 23442 comet 23575 metustid 23616 metustexhalf 23618 metuel2 23627 tngnm 23721 cnheiborlem 24023 bcthlem5 24397 ovollb2lem 24557 ovolctb 24559 ovoliunlem2 24572 ovolshftlem1 24578 ovolscalem1 24582 ovolicc1 24585 ioombl1lem1 24627 dyadf 24660 itg1addlem4 24768 itg1addlem4OLD 24769 limccnp2 24961 dvaddbr 25007 dvmulbr 25008 dvcobr 25015 lhop1lem 25082 cxpcn3 25806 dvdsmulf1o 26248 addsqnreup 26496 tgjustc1 26740 tgjustc2 26741 tgelrnln 26895 numclwwlk1lem2f 28620 ofresid 30880 fsuppcurry1 30962 fsuppcurry2 30963 gsumpart 31217 prsdm 31766 prsrn 31767 esum2dlem 31960 hgt750lemb 32536 cvmlift2lem10 33174 goelel3xp 33210 sat1el2xp 33241 fmla0xp 33245 prv1n 33293 addsval 34053 pprodss4v 34113 poimirlem3 35707 poimirlem4 35708 poimirlem17 35721 poimirlem20 35724 mblfinlem2 35742 projf1o 42625 ovolval4lem1 44077 ovolval5lem2 44081 |
Copyright terms: Public domain | W3C validator |