![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelxpd | Structured version Visualization version GIF version |
Description: Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
opelxpd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
opelxpd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
Ref | Expression |
---|---|
opelxpd | ⊢ (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
2 | opelxpd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
3 | opelxpi 5713 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⟨cop 4634 × cxp 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-opab 5211 df-xp 5682 |
This theorem is referenced by: otel3xp 5722 opabssxpd 5723 relssdmrn 6267 fpr2g 7212 fliftrel 7304 elovimad 7456 el2xptp0 8021 oprab2co 8082 1stconst 8085 2ndconst 8086 curry2 8092 fsplitfpar 8103 offsplitfpar 8104 fnwelem 8116 xpf1o 9138 xpmapenlem 9143 unxpdomlem3 9251 fseqenlem1 10018 fseqenlem2 10019 iundom2g 10534 ordpipq 10936 addpqf 10938 mulpqf 10940 recmulnq 10958 ltexnq 10969 axmulf 11140 cnrecnv 15111 ruclem1 16173 eucalgf 16519 qredeu 16594 crth 16710 phimullem 16711 prmreclem3 16850 setsstruct2 17106 imasaddflem 17475 xpsaddlem 17518 xpsvsca 17522 xpsle 17524 comffval 17642 oppccofval 17660 isoval 17711 brcic 17744 funcf2 17817 idfu2nd 17826 resf2nd 17844 wunfunc 17848 wunfuncOLD 17849 homaval 17980 setcco 18032 catcco 18054 estrcco 18080 xpcco 18134 xpchom2 18137 xpcco2 18138 xpccatid 18139 prfcl 18154 prf1st 18155 prf2nd 18156 evlf2 18170 curf1cl 18180 curf2cl 18183 curfcl 18184 uncf1 18188 uncf2 18189 uncfcurf 18191 diag11 18195 diag12 18196 diag2 18197 curf2ndf 18199 hof2fval 18207 yonedalem21 18225 yonedalem22 18230 yonedalem3b 18231 yonffthlem 18234 latcl2 18388 xpsmnd0 18665 xpsinv 18942 xpsgrpsub 18943 lsmhash 19572 frgpuplem 19639 xpsring1d 20145 mdetrlin 22103 mdetrsca 22104 txcls 23107 txcnp 23123 txcnmpt 23127 txdis1cn 23138 txlly 23139 txnlly 23140 txlm 23151 lmcn2 23152 txkgen 23155 xkococnlem 23162 txhmeo 23306 ptuncnv 23310 txflf 23509 flfcnp2 23510 tmdcn2 23592 qustgplem 23624 tsmsadd 23650 imasdsf1olem 23878 xpsdsval 23886 comet 24021 metustid 24062 metustexhalf 24064 metuel2 24073 tngnm 24167 cnheiborlem 24469 bcthlem5 24844 ovollb2lem 25004 ovolctb 25006 ovoliunlem2 25019 ovolshftlem1 25025 ovolscalem1 25029 ovolicc1 25032 ioombl1lem1 25074 dyadf 25107 itg1addlem4 25215 itg1addlem4OLD 25216 limccnp2 25408 dvaddbr 25454 dvmulbr 25455 dvcobr 25462 lhop1lem 25529 cxpcn3 26253 dvdsmulf1o 26695 addsqnreup 26943 addsval 27443 mulsval 27562 tgjustc1 27723 tgjustc2 27724 tgelrnln 27878 numclwwlk1lem2f 29605 ofresid 31862 fsuppcurry1 31945 fsuppcurry2 31946 gsumpart 32202 prsdm 32889 prsrn 32890 esum2dlem 33085 hgt750lemb 33663 cvmlift2lem10 34298 goelel3xp 34334 sat1el2xp 34365 fmla0xp 34369 prv1n 34417 pprodss4v 34851 gg-dvmulbr 35170 gg-dvcobr 35171 poimirlem3 36486 poimirlem4 36487 poimirlem17 36500 poimirlem20 36503 mblfinlem2 36521 f1o2d2 41057 projf1o 43886 ovolval4lem1 45355 ovolval5lem2 45359 rngqiprngimf 46772 pzriprnglem4 46798 pzriprnglem5 46799 pzriprnglem8 46802 pzriprnglem12 46806 |
Copyright terms: Public domain | W3C validator |