MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem7 Structured version   Visualization version   GIF version

Theorem pzriprnglem7 21404
Description: Lemma 7 for pzriprng 21414: 𝐽 is a unital ring. (Contributed by AV, 19-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
pzriprng.j 𝐽 = (𝑅s 𝐼)
Assertion
Ref Expression
pzriprnglem7 𝐽 ∈ Ring

Proof of Theorem pzriprnglem7
Dummy variables 𝑥 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pzriprng.r . . . 4 𝑅 = (ℤring ×sring)
2 pzriprng.i . . . 4 𝐼 = (ℤ × {0})
31, 2pzriprnglem5 21402 . . 3 𝐼 ∈ (SubRng‘𝑅)
4 pzriprng.j . . . 4 𝐽 = (𝑅s 𝐼)
54subrngrng 20466 . . 3 (𝐼 ∈ (SubRng‘𝑅) → 𝐽 ∈ Rng)
63, 5ax-mp 5 . 2 𝐽 ∈ Rng
7 1z 12570 . . . . 5 1 ∈ ℤ
8 c0ex 11175 . . . . . 6 0 ∈ V
98snid 4629 . . . . 5 0 ∈ {0}
107, 9opelxpii 5679 . . . 4 ⟨1, 0⟩ ∈ (ℤ × {0})
114subrngbas 20470 . . . . . 6 (𝐼 ∈ (SubRng‘𝑅) → 𝐼 = (Base‘𝐽))
123, 11ax-mp 5 . . . . 5 𝐼 = (Base‘𝐽)
1312, 2eqtr3i 2755 . . . 4 (Base‘𝐽) = (ℤ × {0})
1410, 13eleqtrri 2828 . . 3 ⟨1, 0⟩ ∈ (Base‘𝐽)
15 oveq1 7397 . . . . . 6 (𝑖 = ⟨1, 0⟩ → (𝑖(.r𝐽)𝑥) = (⟨1, 0⟩(.r𝐽)𝑥))
1615eqeq1d 2732 . . . . 5 (𝑖 = ⟨1, 0⟩ → ((𝑖(.r𝐽)𝑥) = 𝑥 ↔ (⟨1, 0⟩(.r𝐽)𝑥) = 𝑥))
1716ovanraleqv 7414 . . . 4 (𝑖 = ⟨1, 0⟩ → (∀𝑥 ∈ (Base‘𝐽)((𝑖(.r𝐽)𝑥) = 𝑥 ∧ (𝑥(.r𝐽)𝑖) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐽)((⟨1, 0⟩(.r𝐽)𝑥) = 𝑥 ∧ (𝑥(.r𝐽)⟨1, 0⟩) = 𝑥)))
18 id 22 . . . 4 (⟨1, 0⟩ ∈ (Base‘𝐽) → ⟨1, 0⟩ ∈ (Base‘𝐽))
1912eleq2i 2821 . . . . . . 7 (𝑥𝐼𝑥 ∈ (Base‘𝐽))
201, 2, 4pzriprnglem6 21403 . . . . . . 7 (𝑥𝐼 → ((⟨1, 0⟩(.r𝐽)𝑥) = 𝑥 ∧ (𝑥(.r𝐽)⟨1, 0⟩) = 𝑥))
2119, 20sylbir 235 . . . . . 6 (𝑥 ∈ (Base‘𝐽) → ((⟨1, 0⟩(.r𝐽)𝑥) = 𝑥 ∧ (𝑥(.r𝐽)⟨1, 0⟩) = 𝑥))
2221a1i 11 . . . . 5 (⟨1, 0⟩ ∈ (Base‘𝐽) → (𝑥 ∈ (Base‘𝐽) → ((⟨1, 0⟩(.r𝐽)𝑥) = 𝑥 ∧ (𝑥(.r𝐽)⟨1, 0⟩) = 𝑥)))
2322ralrimiv 3125 . . . 4 (⟨1, 0⟩ ∈ (Base‘𝐽) → ∀𝑥 ∈ (Base‘𝐽)((⟨1, 0⟩(.r𝐽)𝑥) = 𝑥 ∧ (𝑥(.r𝐽)⟨1, 0⟩) = 𝑥))
2417, 18, 23rspcedvdw 3594 . . 3 (⟨1, 0⟩ ∈ (Base‘𝐽) → ∃𝑖 ∈ (Base‘𝐽)∀𝑥 ∈ (Base‘𝐽)((𝑖(.r𝐽)𝑥) = 𝑥 ∧ (𝑥(.r𝐽)𝑖) = 𝑥))
2514, 24ax-mp 5 . 2 𝑖 ∈ (Base‘𝐽)∀𝑥 ∈ (Base‘𝐽)((𝑖(.r𝐽)𝑥) = 𝑥 ∧ (𝑥(.r𝐽)𝑖) = 𝑥)
26 eqid 2730 . . 3 (Base‘𝐽) = (Base‘𝐽)
27 eqid 2730 . . 3 (.r𝐽) = (.r𝐽)
2826, 27isringrng 20203 . 2 (𝐽 ∈ Ring ↔ (𝐽 ∈ Rng ∧ ∃𝑖 ∈ (Base‘𝐽)∀𝑥 ∈ (Base‘𝐽)((𝑖(.r𝐽)𝑥) = 𝑥 ∧ (𝑥(.r𝐽)𝑖) = 𝑥)))
296, 25, 28mpbir2an 711 1 𝐽 ∈ Ring
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {csn 4592  cop 4598   × cxp 5639  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076  cz 12536  Basecbs 17186  s cress 17207  .rcmulr 17228   ×s cxps 17476  Rngcrng 20068  Ringcrg 20149  SubRngcsubrng 20461  ringczring 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-prds 17417  df-imas 17478  df-xps 17480  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20462  df-subrg 20486  df-cnfld 21272  df-zring 21364
This theorem is referenced by:  pzriprnglem9  21406  pzriprngALT  21412  pzriprng1ALT  21413
  Copyright terms: Public domain W3C validator