![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pzriprnglem7 | Structured version Visualization version GIF version |
Description: Lemma 7 for pzriprng 46821: 𝐽 is a unital ring. (Contributed by AV, 19-Mar-2025.) |
Ref | Expression |
---|---|
pzriprng.r | ⊢ 𝑅 = (ℤring ×s ℤring) |
pzriprng.i | ⊢ 𝐼 = (ℤ × {0}) |
pzriprng.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
Ref | Expression |
---|---|
pzriprnglem7 | ⊢ 𝐽 ∈ Ring |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pzriprng.r | . . . 4 ⊢ 𝑅 = (ℤring ×s ℤring) | |
2 | pzriprng.i | . . . 4 ⊢ 𝐼 = (ℤ × {0}) | |
3 | 1, 2 | pzriprnglem5 46809 | . . 3 ⊢ 𝐼 ∈ (SubRng‘𝑅) |
4 | pzriprng.j | . . . 4 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
5 | 4 | subrngrng 46729 | . . 3 ⊢ (𝐼 ∈ (SubRng‘𝑅) → 𝐽 ∈ Rng) |
6 | 3, 5 | ax-mp 5 | . 2 ⊢ 𝐽 ∈ Rng |
7 | 1z 12592 | . . . . 5 ⊢ 1 ∈ ℤ | |
8 | c0ex 11208 | . . . . . 6 ⊢ 0 ∈ V | |
9 | 8 | snid 4665 | . . . . 5 ⊢ 0 ∈ {0} |
10 | 7, 9 | opelxpii 5715 | . . . 4 ⊢ ⟨1, 0⟩ ∈ (ℤ × {0}) |
11 | 4 | subrngbas 46733 | . . . . . 6 ⊢ (𝐼 ∈ (SubRng‘𝑅) → 𝐼 = (Base‘𝐽)) |
12 | 3, 11 | ax-mp 5 | . . . . 5 ⊢ 𝐼 = (Base‘𝐽) |
13 | 12, 2 | eqtr3i 2763 | . . . 4 ⊢ (Base‘𝐽) = (ℤ × {0}) |
14 | 10, 13 | eleqtrri 2833 | . . 3 ⊢ ⟨1, 0⟩ ∈ (Base‘𝐽) |
15 | oveq1 7416 | . . . . . 6 ⊢ (𝑖 = ⟨1, 0⟩ → (𝑖(.r‘𝐽)𝑥) = (⟨1, 0⟩(.r‘𝐽)𝑥)) | |
16 | 15 | eqeq1d 2735 | . . . . 5 ⊢ (𝑖 = ⟨1, 0⟩ → ((𝑖(.r‘𝐽)𝑥) = 𝑥 ↔ (⟨1, 0⟩(.r‘𝐽)𝑥) = 𝑥)) |
17 | 16 | ovanraleqv 7433 | . . . 4 ⊢ (𝑖 = ⟨1, 0⟩ → (∀𝑥 ∈ (Base‘𝐽)((𝑖(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)𝑖) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐽)((⟨1, 0⟩(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)⟨1, 0⟩) = 𝑥))) |
18 | id 22 | . . . 4 ⊢ (⟨1, 0⟩ ∈ (Base‘𝐽) → ⟨1, 0⟩ ∈ (Base‘𝐽)) | |
19 | 12 | eleq2i 2826 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐼 ↔ 𝑥 ∈ (Base‘𝐽)) |
20 | 1, 2, 4 | pzriprnglem6 46810 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐼 → ((⟨1, 0⟩(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)⟨1, 0⟩) = 𝑥)) |
21 | 19, 20 | sylbir 234 | . . . . . 6 ⊢ (𝑥 ∈ (Base‘𝐽) → ((⟨1, 0⟩(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)⟨1, 0⟩) = 𝑥)) |
22 | 21 | a1i 11 | . . . . 5 ⊢ (⟨1, 0⟩ ∈ (Base‘𝐽) → (𝑥 ∈ (Base‘𝐽) → ((⟨1, 0⟩(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)⟨1, 0⟩) = 𝑥))) |
23 | 22 | ralrimiv 3146 | . . . 4 ⊢ (⟨1, 0⟩ ∈ (Base‘𝐽) → ∀𝑥 ∈ (Base‘𝐽)((⟨1, 0⟩(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)⟨1, 0⟩) = 𝑥)) |
24 | 17, 18, 23 | rspcedvdw 3616 | . . 3 ⊢ (⟨1, 0⟩ ∈ (Base‘𝐽) → ∃𝑖 ∈ (Base‘𝐽)∀𝑥 ∈ (Base‘𝐽)((𝑖(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)𝑖) = 𝑥)) |
25 | 14, 24 | ax-mp 5 | . 2 ⊢ ∃𝑖 ∈ (Base‘𝐽)∀𝑥 ∈ (Base‘𝐽)((𝑖(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)𝑖) = 𝑥) |
26 | eqid 2733 | . . 3 ⊢ (Base‘𝐽) = (Base‘𝐽) | |
27 | eqid 2733 | . . 3 ⊢ (.r‘𝐽) = (.r‘𝐽) | |
28 | 26, 27 | isringrng 46657 | . 2 ⊢ (𝐽 ∈ Ring ↔ (𝐽 ∈ Rng ∧ ∃𝑖 ∈ (Base‘𝐽)∀𝑥 ∈ (Base‘𝐽)((𝑖(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)𝑖) = 𝑥))) |
29 | 6, 25, 28 | mpbir2an 710 | 1 ⊢ 𝐽 ∈ Ring |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 {csn 4629 ⟨cop 4635 × cxp 5675 ‘cfv 6544 (class class class)co 7409 0cc0 11110 1c1 11111 ℤcz 12558 Basecbs 17144 ↾s cress 17173 .rcmulr 17198 ×s cxps 17452 Ringcrg 20056 ℤringczring 21017 Rngcrng 46648 SubRngcsubrng 46724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-er 8703 df-map 8822 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-0g 17387 df-prds 17393 df-imas 17454 df-xps 17456 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-minusg 18823 df-subg 19003 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-cring 20059 df-subrg 20317 df-cnfld 20945 df-zring 21018 df-rng 46649 df-subrng 46725 |
This theorem is referenced by: pzriprnglem9 46813 pzriprngALT 46819 pzriprng1ALT 46820 |
Copyright terms: Public domain | W3C validator |