| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pzriprnglem7 | Structured version Visualization version GIF version | ||
| Description: Lemma 7 for pzriprng 21434: 𝐽 is a unital ring. (Contributed by AV, 19-Mar-2025.) |
| Ref | Expression |
|---|---|
| pzriprng.r | ⊢ 𝑅 = (ℤring ×s ℤring) |
| pzriprng.i | ⊢ 𝐼 = (ℤ × {0}) |
| pzriprng.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| Ref | Expression |
|---|---|
| pzriprnglem7 | ⊢ 𝐽 ∈ Ring |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pzriprng.r | . . . 4 ⊢ 𝑅 = (ℤring ×s ℤring) | |
| 2 | pzriprng.i | . . . 4 ⊢ 𝐼 = (ℤ × {0}) | |
| 3 | 1, 2 | pzriprnglem5 21422 | . . 3 ⊢ 𝐼 ∈ (SubRng‘𝑅) |
| 4 | pzriprng.j | . . . 4 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 5 | 4 | subrngrng 20465 | . . 3 ⊢ (𝐼 ∈ (SubRng‘𝑅) → 𝐽 ∈ Rng) |
| 6 | 3, 5 | ax-mp 5 | . 2 ⊢ 𝐽 ∈ Rng |
| 7 | 1z 12502 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 8 | c0ex 11106 | . . . . . 6 ⊢ 0 ∈ V | |
| 9 | 8 | snid 4612 | . . . . 5 ⊢ 0 ∈ {0} |
| 10 | 7, 9 | opelxpii 5652 | . . . 4 ⊢ 〈1, 0〉 ∈ (ℤ × {0}) |
| 11 | 4 | subrngbas 20469 | . . . . . 6 ⊢ (𝐼 ∈ (SubRng‘𝑅) → 𝐼 = (Base‘𝐽)) |
| 12 | 3, 11 | ax-mp 5 | . . . . 5 ⊢ 𝐼 = (Base‘𝐽) |
| 13 | 12, 2 | eqtr3i 2756 | . . . 4 ⊢ (Base‘𝐽) = (ℤ × {0}) |
| 14 | 10, 13 | eleqtrri 2830 | . . 3 ⊢ 〈1, 0〉 ∈ (Base‘𝐽) |
| 15 | oveq1 7353 | . . . . . 6 ⊢ (𝑖 = 〈1, 0〉 → (𝑖(.r‘𝐽)𝑥) = (〈1, 0〉(.r‘𝐽)𝑥)) | |
| 16 | 15 | eqeq1d 2733 | . . . . 5 ⊢ (𝑖 = 〈1, 0〉 → ((𝑖(.r‘𝐽)𝑥) = 𝑥 ↔ (〈1, 0〉(.r‘𝐽)𝑥) = 𝑥)) |
| 17 | 16 | ovanraleqv 7370 | . . . 4 ⊢ (𝑖 = 〈1, 0〉 → (∀𝑥 ∈ (Base‘𝐽)((𝑖(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)𝑖) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐽)((〈1, 0〉(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)〈1, 0〉) = 𝑥))) |
| 18 | id 22 | . . . 4 ⊢ (〈1, 0〉 ∈ (Base‘𝐽) → 〈1, 0〉 ∈ (Base‘𝐽)) | |
| 19 | 12 | eleq2i 2823 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐼 ↔ 𝑥 ∈ (Base‘𝐽)) |
| 20 | 1, 2, 4 | pzriprnglem6 21423 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐼 → ((〈1, 0〉(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)〈1, 0〉) = 𝑥)) |
| 21 | 19, 20 | sylbir 235 | . . . . . 6 ⊢ (𝑥 ∈ (Base‘𝐽) → ((〈1, 0〉(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)〈1, 0〉) = 𝑥)) |
| 22 | 21 | a1i 11 | . . . . 5 ⊢ (〈1, 0〉 ∈ (Base‘𝐽) → (𝑥 ∈ (Base‘𝐽) → ((〈1, 0〉(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)〈1, 0〉) = 𝑥))) |
| 23 | 22 | ralrimiv 3123 | . . . 4 ⊢ (〈1, 0〉 ∈ (Base‘𝐽) → ∀𝑥 ∈ (Base‘𝐽)((〈1, 0〉(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)〈1, 0〉) = 𝑥)) |
| 24 | 17, 18, 23 | rspcedvdw 3575 | . . 3 ⊢ (〈1, 0〉 ∈ (Base‘𝐽) → ∃𝑖 ∈ (Base‘𝐽)∀𝑥 ∈ (Base‘𝐽)((𝑖(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)𝑖) = 𝑥)) |
| 25 | 14, 24 | ax-mp 5 | . 2 ⊢ ∃𝑖 ∈ (Base‘𝐽)∀𝑥 ∈ (Base‘𝐽)((𝑖(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)𝑖) = 𝑥) |
| 26 | eqid 2731 | . . 3 ⊢ (Base‘𝐽) = (Base‘𝐽) | |
| 27 | eqid 2731 | . . 3 ⊢ (.r‘𝐽) = (.r‘𝐽) | |
| 28 | 26, 27 | isringrng 20205 | . 2 ⊢ (𝐽 ∈ Ring ↔ (𝐽 ∈ Rng ∧ ∃𝑖 ∈ (Base‘𝐽)∀𝑥 ∈ (Base‘𝐽)((𝑖(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)𝑖) = 𝑥))) |
| 29 | 6, 25, 28 | mpbir2an 711 | 1 ⊢ 𝐽 ∈ Ring |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 {csn 4573 〈cop 4579 × cxp 5612 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 ℤcz 12468 Basecbs 17120 ↾s cress 17141 .rcmulr 17162 ×s cxps 17410 Rngcrng 20070 Ringcrg 20151 SubRngcsubrng 20460 ℤringczring 21383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-imas 17412 df-xps 17414 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-subg 19036 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-subrng 20461 df-subrg 20485 df-cnfld 21292 df-zring 21384 |
| This theorem is referenced by: pzriprnglem9 21426 pzriprngALT 21432 pzriprng1ALT 21433 |
| Copyright terms: Public domain | W3C validator |