| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pzriprnglem7 | Structured version Visualization version GIF version | ||
| Description: Lemma 7 for pzriprng 21456: 𝐽 is a unital ring. (Contributed by AV, 19-Mar-2025.) |
| Ref | Expression |
|---|---|
| pzriprng.r | ⊢ 𝑅 = (ℤring ×s ℤring) |
| pzriprng.i | ⊢ 𝐼 = (ℤ × {0}) |
| pzriprng.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| Ref | Expression |
|---|---|
| pzriprnglem7 | ⊢ 𝐽 ∈ Ring |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pzriprng.r | . . . 4 ⊢ 𝑅 = (ℤring ×s ℤring) | |
| 2 | pzriprng.i | . . . 4 ⊢ 𝐼 = (ℤ × {0}) | |
| 3 | 1, 2 | pzriprnglem5 21444 | . . 3 ⊢ 𝐼 ∈ (SubRng‘𝑅) |
| 4 | pzriprng.j | . . . 4 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 5 | 4 | subrngrng 20508 | . . 3 ⊢ (𝐼 ∈ (SubRng‘𝑅) → 𝐽 ∈ Rng) |
| 6 | 3, 5 | ax-mp 5 | . 2 ⊢ 𝐽 ∈ Rng |
| 7 | 1z 12620 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 8 | c0ex 11227 | . . . . . 6 ⊢ 0 ∈ V | |
| 9 | 8 | snid 4638 | . . . . 5 ⊢ 0 ∈ {0} |
| 10 | 7, 9 | opelxpii 5692 | . . . 4 ⊢ 〈1, 0〉 ∈ (ℤ × {0}) |
| 11 | 4 | subrngbas 20512 | . . . . . 6 ⊢ (𝐼 ∈ (SubRng‘𝑅) → 𝐼 = (Base‘𝐽)) |
| 12 | 3, 11 | ax-mp 5 | . . . . 5 ⊢ 𝐼 = (Base‘𝐽) |
| 13 | 12, 2 | eqtr3i 2760 | . . . 4 ⊢ (Base‘𝐽) = (ℤ × {0}) |
| 14 | 10, 13 | eleqtrri 2833 | . . 3 ⊢ 〈1, 0〉 ∈ (Base‘𝐽) |
| 15 | oveq1 7410 | . . . . . 6 ⊢ (𝑖 = 〈1, 0〉 → (𝑖(.r‘𝐽)𝑥) = (〈1, 0〉(.r‘𝐽)𝑥)) | |
| 16 | 15 | eqeq1d 2737 | . . . . 5 ⊢ (𝑖 = 〈1, 0〉 → ((𝑖(.r‘𝐽)𝑥) = 𝑥 ↔ (〈1, 0〉(.r‘𝐽)𝑥) = 𝑥)) |
| 17 | 16 | ovanraleqv 7427 | . . . 4 ⊢ (𝑖 = 〈1, 0〉 → (∀𝑥 ∈ (Base‘𝐽)((𝑖(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)𝑖) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐽)((〈1, 0〉(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)〈1, 0〉) = 𝑥))) |
| 18 | id 22 | . . . 4 ⊢ (〈1, 0〉 ∈ (Base‘𝐽) → 〈1, 0〉 ∈ (Base‘𝐽)) | |
| 19 | 12 | eleq2i 2826 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐼 ↔ 𝑥 ∈ (Base‘𝐽)) |
| 20 | 1, 2, 4 | pzriprnglem6 21445 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐼 → ((〈1, 0〉(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)〈1, 0〉) = 𝑥)) |
| 21 | 19, 20 | sylbir 235 | . . . . . 6 ⊢ (𝑥 ∈ (Base‘𝐽) → ((〈1, 0〉(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)〈1, 0〉) = 𝑥)) |
| 22 | 21 | a1i 11 | . . . . 5 ⊢ (〈1, 0〉 ∈ (Base‘𝐽) → (𝑥 ∈ (Base‘𝐽) → ((〈1, 0〉(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)〈1, 0〉) = 𝑥))) |
| 23 | 22 | ralrimiv 3131 | . . . 4 ⊢ (〈1, 0〉 ∈ (Base‘𝐽) → ∀𝑥 ∈ (Base‘𝐽)((〈1, 0〉(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)〈1, 0〉) = 𝑥)) |
| 24 | 17, 18, 23 | rspcedvdw 3604 | . . 3 ⊢ (〈1, 0〉 ∈ (Base‘𝐽) → ∃𝑖 ∈ (Base‘𝐽)∀𝑥 ∈ (Base‘𝐽)((𝑖(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)𝑖) = 𝑥)) |
| 25 | 14, 24 | ax-mp 5 | . 2 ⊢ ∃𝑖 ∈ (Base‘𝐽)∀𝑥 ∈ (Base‘𝐽)((𝑖(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)𝑖) = 𝑥) |
| 26 | eqid 2735 | . . 3 ⊢ (Base‘𝐽) = (Base‘𝐽) | |
| 27 | eqid 2735 | . . 3 ⊢ (.r‘𝐽) = (.r‘𝐽) | |
| 28 | 26, 27 | isringrng 20245 | . 2 ⊢ (𝐽 ∈ Ring ↔ (𝐽 ∈ Rng ∧ ∃𝑖 ∈ (Base‘𝐽)∀𝑥 ∈ (Base‘𝐽)((𝑖(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)𝑖) = 𝑥))) |
| 29 | 6, 25, 28 | mpbir2an 711 | 1 ⊢ 𝐽 ∈ Ring |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 {csn 4601 〈cop 4607 × cxp 5652 ‘cfv 6530 (class class class)co 7403 0cc0 11127 1c1 11128 ℤcz 12586 Basecbs 17226 ↾s cress 17249 .rcmulr 17270 ×s cxps 17518 Rngcrng 20110 Ringcrg 20191 SubRngcsubrng 20503 ℤringczring 21405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-addf 11206 ax-mulf 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-0g 17453 df-prds 17459 df-imas 17520 df-xps 17522 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-minusg 18918 df-subg 19104 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-cring 20194 df-subrng 20504 df-subrg 20528 df-cnfld 21314 df-zring 21406 |
| This theorem is referenced by: pzriprnglem9 21448 pzriprngALT 21454 pzriprng1ALT 21455 |
| Copyright terms: Public domain | W3C validator |