Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dssmap2d | Structured version Visualization version GIF version |
Description: For any base set 𝐵 the duality operator for self-mappings of subsets of that base set when composed with itself is the restricted identity operator. (Contributed by RP, 21-Apr-2021.) |
Ref | Expression |
---|---|
dssmapfvd.o | ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) |
dssmapfvd.d | ⊢ 𝐷 = (𝑂‘𝐵) |
dssmapfvd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
dssmap2d | ⊢ (𝜑 → (𝐷 ∘ 𝐷) = ( I ↾ (𝒫 𝐵 ↑m 𝒫 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dssmapfvd.o | . . . 4 ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) | |
2 | dssmapfvd.d | . . . 4 ⊢ 𝐷 = (𝑂‘𝐵) | |
3 | dssmapfvd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
4 | 1, 2, 3 | dssmapnvod 41517 | . . 3 ⊢ (𝜑 → ◡𝐷 = 𝐷) |
5 | 4 | coeq1d 5759 | . 2 ⊢ (𝜑 → (◡𝐷 ∘ 𝐷) = (𝐷 ∘ 𝐷)) |
6 | 1, 2, 3 | dssmapf1od 41518 | . . 3 ⊢ (𝜑 → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
7 | f1ococnv1 6728 | . . 3 ⊢ (𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵) → (◡𝐷 ∘ 𝐷) = ( I ↾ (𝒫 𝐵 ↑m 𝒫 𝐵))) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → (◡𝐷 ∘ 𝐷) = ( I ↾ (𝒫 𝐵 ↑m 𝒫 𝐵))) |
9 | 5, 8 | eqtr3d 2780 | 1 ⊢ (𝜑 → (𝐷 ∘ 𝐷) = ( I ↾ (𝒫 𝐵 ↑m 𝒫 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 𝒫 cpw 4530 ↦ cmpt 5153 I cid 5479 ◡ccnv 5579 ↾ cres 5582 ∘ ccom 5584 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-map 8575 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |