| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dssmap2d | Structured version Visualization version GIF version | ||
| Description: For any base set 𝐵 the duality operator for self-mappings of subsets of that base set when composed with itself is the restricted identity operator. (Contributed by RP, 21-Apr-2021.) |
| Ref | Expression |
|---|---|
| dssmapfvd.o | ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) |
| dssmapfvd.d | ⊢ 𝐷 = (𝑂‘𝐵) |
| dssmapfvd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| dssmap2d | ⊢ (𝜑 → (𝐷 ∘ 𝐷) = ( I ↾ (𝒫 𝐵 ↑m 𝒫 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dssmapfvd.o | . . . 4 ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) | |
| 2 | dssmapfvd.d | . . . 4 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 3 | dssmapfvd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 4 | 1, 2, 3 | dssmapnvod 44002 | . . 3 ⊢ (𝜑 → ◡𝐷 = 𝐷) |
| 5 | 4 | coeq1d 5827 | . 2 ⊢ (𝜑 → (◡𝐷 ∘ 𝐷) = (𝐷 ∘ 𝐷)) |
| 6 | 1, 2, 3 | dssmapf1od 44003 | . . 3 ⊢ (𝜑 → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 7 | f1ococnv1 6831 | . . 3 ⊢ (𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵) → (◡𝐷 ∘ 𝐷) = ( I ↾ (𝒫 𝐵 ↑m 𝒫 𝐵))) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → (◡𝐷 ∘ 𝐷) = ( I ↾ (𝒫 𝐵 ↑m 𝒫 𝐵))) |
| 9 | 5, 8 | eqtr3d 2767 | 1 ⊢ (𝜑 → (𝐷 ∘ 𝐷) = ( I ↾ (𝒫 𝐵 ↑m 𝒫 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3913 𝒫 cpw 4565 ↦ cmpt 5190 I cid 5534 ◡ccnv 5639 ↾ cres 5642 ∘ ccom 5644 –1-1-onto→wf1o 6512 ‘cfv 6513 (class class class)co 7389 ↑m cmap 8801 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-map 8803 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |