Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmap2d Structured version   Visualization version   GIF version

Theorem dssmap2d 41248
Description: For any base set 𝐵 the duality operator for self-mappings of subsets of that base set when composed with itself is the restricted identity operator. (Contributed by RP, 21-Apr-2021.)
Hypotheses
Ref Expression
dssmapfvd.o 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
dssmapfvd.d 𝐷 = (𝑂𝐵)
dssmapfvd.b (𝜑𝐵𝑉)
Assertion
Ref Expression
dssmap2d (𝜑 → (𝐷𝐷) = ( I ↾ (𝒫 𝐵m 𝒫 𝐵)))
Distinct variable groups:   𝐵,𝑏,𝑓,𝑠   𝜑,𝑏,𝑓,𝑠
Allowed substitution hints:   𝐷(𝑓,𝑠,𝑏)   𝑂(𝑓,𝑠,𝑏)   𝑉(𝑓,𝑠,𝑏)

Proof of Theorem dssmap2d
StepHypRef Expression
1 dssmapfvd.o . . . 4 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
2 dssmapfvd.d . . . 4 𝐷 = (𝑂𝐵)
3 dssmapfvd.b . . . 4 (𝜑𝐵𝑉)
41, 2, 3dssmapnvod 41246 . . 3 (𝜑𝐷 = 𝐷)
54coeq1d 5715 . 2 (𝜑 → (𝐷𝐷) = (𝐷𝐷))
61, 2, 3dssmapf1od 41247 . . 3 (𝜑𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
7 f1ococnv1 6667 . . 3 (𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵) → (𝐷𝐷) = ( I ↾ (𝒫 𝐵m 𝒫 𝐵)))
86, 7syl 17 . 2 (𝜑 → (𝐷𝐷) = ( I ↾ (𝒫 𝐵m 𝒫 𝐵)))
95, 8eqtr3d 2773 1 (𝜑 → (𝐷𝐷) = ( I ↾ (𝒫 𝐵m 𝒫 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  Vcvv 3398  cdif 3850  𝒫 cpw 4499  cmpt 5120   I cid 5439  ccnv 5535  cres 5538  ccom 5540  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7191  m cmap 8486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-map 8488
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator