![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dssmap2d | Structured version Visualization version GIF version |
Description: For any base set 𝐵 the duality operator for self-mappings of subsets of that base set when composed with itself is the restricted identity operator. (Contributed by RP, 21-Apr-2021.) |
Ref | Expression |
---|---|
dssmapfvd.o | ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) |
dssmapfvd.d | ⊢ 𝐷 = (𝑂‘𝐵) |
dssmapfvd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
dssmap2d | ⊢ (𝜑 → (𝐷 ∘ 𝐷) = ( I ↾ (𝒫 𝐵 ↑m 𝒫 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dssmapfvd.o | . . . 4 ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) | |
2 | dssmapfvd.d | . . . 4 ⊢ 𝐷 = (𝑂‘𝐵) | |
3 | dssmapfvd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
4 | 1, 2, 3 | dssmapnvod 43344 | . . 3 ⊢ (𝜑 → ◡𝐷 = 𝐷) |
5 | 4 | coeq1d 5855 | . 2 ⊢ (𝜑 → (◡𝐷 ∘ 𝐷) = (𝐷 ∘ 𝐷)) |
6 | 1, 2, 3 | dssmapf1od 43345 | . . 3 ⊢ (𝜑 → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
7 | f1ococnv1 6856 | . . 3 ⊢ (𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵) → (◡𝐷 ∘ 𝐷) = ( I ↾ (𝒫 𝐵 ↑m 𝒫 𝐵))) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → (◡𝐷 ∘ 𝐷) = ( I ↾ (𝒫 𝐵 ↑m 𝒫 𝐵))) |
9 | 5, 8 | eqtr3d 2768 | 1 ⊢ (𝜑 → (𝐷 ∘ 𝐷) = ( I ↾ (𝒫 𝐵 ↑m 𝒫 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ∖ cdif 3940 𝒫 cpw 4597 ↦ cmpt 5224 I cid 5566 ◡ccnv 5668 ↾ cres 5671 ∘ ccom 5673 –1-1-onto→wf1o 6536 ‘cfv 6537 (class class class)co 7405 ↑m cmap 8822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-map 8824 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |