| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metn0 | Structured version Visualization version GIF version | ||
| Description: A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| metn0 | ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metf 24269 | . . . . 5 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | |
| 2 | frel 6711 | . . . . 5 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ → Rel 𝐷) | |
| 3 | reldm0 5907 | . . . . 5 ⊢ (Rel 𝐷 → (𝐷 = ∅ ↔ dom 𝐷 = ∅)) | |
| 4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 = ∅ ↔ dom 𝐷 = ∅)) |
| 5 | 1 | fdmd 6716 | . . . . 5 ⊢ (𝐷 ∈ (Met‘𝑋) → dom 𝐷 = (𝑋 × 𝑋)) |
| 6 | 5 | eqeq1d 2737 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) → (dom 𝐷 = ∅ ↔ (𝑋 × 𝑋) = ∅)) |
| 7 | 4, 6 | bitrd 279 | . . 3 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 = ∅ ↔ (𝑋 × 𝑋) = ∅)) |
| 8 | xpeq0 6149 | . . . 4 ⊢ ((𝑋 × 𝑋) = ∅ ↔ (𝑋 = ∅ ∨ 𝑋 = ∅)) | |
| 9 | oridm 904 | . . . 4 ⊢ ((𝑋 = ∅ ∨ 𝑋 = ∅) ↔ 𝑋 = ∅) | |
| 10 | 8, 9 | bitri 275 | . . 3 ⊢ ((𝑋 × 𝑋) = ∅ ↔ 𝑋 = ∅) |
| 11 | 7, 10 | bitrdi 287 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 = ∅ ↔ 𝑋 = ∅)) |
| 12 | 11 | necon3bid 2976 | 1 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∅c0 4308 × cxp 5652 dom cdm 5654 Rel wrel 5659 ⟶wf 6527 ‘cfv 6531 ℝcr 11128 Metcmet 21301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-met 21309 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |