![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metn0 | Structured version Visualization version GIF version |
Description: A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
metn0 | ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metf 24356 | . . . . 5 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | |
2 | frel 6742 | . . . . 5 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ → Rel 𝐷) | |
3 | reldm0 5941 | . . . . 5 ⊢ (Rel 𝐷 → (𝐷 = ∅ ↔ dom 𝐷 = ∅)) | |
4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 = ∅ ↔ dom 𝐷 = ∅)) |
5 | 1 | fdmd 6747 | . . . . 5 ⊢ (𝐷 ∈ (Met‘𝑋) → dom 𝐷 = (𝑋 × 𝑋)) |
6 | 5 | eqeq1d 2737 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) → (dom 𝐷 = ∅ ↔ (𝑋 × 𝑋) = ∅)) |
7 | 4, 6 | bitrd 279 | . . 3 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 = ∅ ↔ (𝑋 × 𝑋) = ∅)) |
8 | xpeq0 6182 | . . . 4 ⊢ ((𝑋 × 𝑋) = ∅ ↔ (𝑋 = ∅ ∨ 𝑋 = ∅)) | |
9 | oridm 904 | . . . 4 ⊢ ((𝑋 = ∅ ∨ 𝑋 = ∅) ↔ 𝑋 = ∅) | |
10 | 8, 9 | bitri 275 | . . 3 ⊢ ((𝑋 × 𝑋) = ∅ ↔ 𝑋 = ∅) |
11 | 7, 10 | bitrdi 287 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 = ∅ ↔ 𝑋 = ∅)) |
12 | 11 | necon3bid 2983 | 1 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∅c0 4339 × cxp 5687 dom cdm 5689 Rel wrel 5694 ⟶wf 6559 ‘cfv 6563 ℝcr 11152 Metcmet 21368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-met 21376 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |