![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metn0 | Structured version Visualization version GIF version |
Description: A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
metn0 | β’ (π· β (Metβπ) β (π· β β β π β β )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metf 23835 | . . . . 5 β’ (π· β (Metβπ) β π·:(π Γ π)βΆβ) | |
2 | frel 6722 | . . . . 5 β’ (π·:(π Γ π)βΆβ β Rel π·) | |
3 | reldm0 5927 | . . . . 5 β’ (Rel π· β (π· = β β dom π· = β )) | |
4 | 1, 2, 3 | 3syl 18 | . . . 4 β’ (π· β (Metβπ) β (π· = β β dom π· = β )) |
5 | 1 | fdmd 6728 | . . . . 5 β’ (π· β (Metβπ) β dom π· = (π Γ π)) |
6 | 5 | eqeq1d 2734 | . . . 4 β’ (π· β (Metβπ) β (dom π· = β β (π Γ π) = β )) |
7 | 4, 6 | bitrd 278 | . . 3 β’ (π· β (Metβπ) β (π· = β β (π Γ π) = β )) |
8 | xpeq0 6159 | . . . 4 β’ ((π Γ π) = β β (π = β β¨ π = β )) | |
9 | oridm 903 | . . . 4 β’ ((π = β β¨ π = β ) β π = β ) | |
10 | 8, 9 | bitri 274 | . . 3 β’ ((π Γ π) = β β π = β ) |
11 | 7, 10 | bitrdi 286 | . 2 β’ (π· β (Metβπ) β (π· = β β π = β )) |
12 | 11 | necon3bid 2985 | 1 β’ (π· β (Metβπ) β (π· β β β π β β )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β¨ wo 845 = wceq 1541 β wcel 2106 β wne 2940 β c0 4322 Γ cxp 5674 dom cdm 5676 Rel wrel 5681 βΆwf 6539 βcfv 6543 βcr 11108 Metcmet 20929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-map 8821 df-met 20937 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |