![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metn0 | Structured version Visualization version GIF version |
Description: A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
metn0 | ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metf 24361 | . . . . 5 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | |
2 | frel 6752 | . . . . 5 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ → Rel 𝐷) | |
3 | reldm0 5952 | . . . . 5 ⊢ (Rel 𝐷 → (𝐷 = ∅ ↔ dom 𝐷 = ∅)) | |
4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 = ∅ ↔ dom 𝐷 = ∅)) |
5 | 1 | fdmd 6757 | . . . . 5 ⊢ (𝐷 ∈ (Met‘𝑋) → dom 𝐷 = (𝑋 × 𝑋)) |
6 | 5 | eqeq1d 2742 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) → (dom 𝐷 = ∅ ↔ (𝑋 × 𝑋) = ∅)) |
7 | 4, 6 | bitrd 279 | . . 3 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 = ∅ ↔ (𝑋 × 𝑋) = ∅)) |
8 | xpeq0 6191 | . . . 4 ⊢ ((𝑋 × 𝑋) = ∅ ↔ (𝑋 = ∅ ∨ 𝑋 = ∅)) | |
9 | oridm 903 | . . . 4 ⊢ ((𝑋 = ∅ ∨ 𝑋 = ∅) ↔ 𝑋 = ∅) | |
10 | 8, 9 | bitri 275 | . . 3 ⊢ ((𝑋 × 𝑋) = ∅ ↔ 𝑋 = ∅) |
11 | 7, 10 | bitrdi 287 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 = ∅ ↔ 𝑋 = ∅)) |
12 | 11 | necon3bid 2991 | 1 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 × cxp 5698 dom cdm 5700 Rel wrel 5705 ⟶wf 6569 ‘cfv 6573 ℝcr 11183 Metcmet 21373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-met 21381 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |