MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metn0 Structured version   Visualization version   GIF version

Theorem metn0 24255
Description: A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
metn0 (𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅))

Proof of Theorem metn0
StepHypRef Expression
1 metf 24225 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
2 frel 6696 . . . . 5 (𝐷:(𝑋 × 𝑋)⟶ℝ → Rel 𝐷)
3 reldm0 5894 . . . . 5 (Rel 𝐷 → (𝐷 = ∅ ↔ dom 𝐷 = ∅))
41, 2, 33syl 18 . . . 4 (𝐷 ∈ (Met‘𝑋) → (𝐷 = ∅ ↔ dom 𝐷 = ∅))
51fdmd 6701 . . . . 5 (𝐷 ∈ (Met‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
65eqeq1d 2732 . . . 4 (𝐷 ∈ (Met‘𝑋) → (dom 𝐷 = ∅ ↔ (𝑋 × 𝑋) = ∅))
74, 6bitrd 279 . . 3 (𝐷 ∈ (Met‘𝑋) → (𝐷 = ∅ ↔ (𝑋 × 𝑋) = ∅))
8 xpeq0 6136 . . . 4 ((𝑋 × 𝑋) = ∅ ↔ (𝑋 = ∅ ∨ 𝑋 = ∅))
9 oridm 904 . . . 4 ((𝑋 = ∅ ∨ 𝑋 = ∅) ↔ 𝑋 = ∅)
108, 9bitri 275 . . 3 ((𝑋 × 𝑋) = ∅ ↔ 𝑋 = ∅)
117, 10bitrdi 287 . 2 (𝐷 ∈ (Met‘𝑋) → (𝐷 = ∅ ↔ 𝑋 = ∅))
1211necon3bid 2970 1 (𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109  wne 2926  c0 4299   × cxp 5639  dom cdm 5641  Rel wrel 5646  wf 6510  cfv 6514  cr 11074  Metcmet 21257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-met 21265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator