MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxcph Structured version   Visualization version   GIF version

Theorem rrxcph 23998
Description: Generalized Euclidean real spaces are subcomplex pre-Hilbert spaces. (Contributed by Thierry Arnoux, 23-Jun-2019.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxcph (𝐼𝑉𝐻 ∈ ℂPreHil)

Proof of Theorem rrxcph
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxval.r . . 3 𝐻 = (ℝ^‘𝐼)
21rrxval 23993 . 2 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
3 eqid 2824 . . 3 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
4 eqid 2824 . . 3 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
5 eqid 2824 . . 3 (Scalar‘(ℝfld freeLMod 𝐼)) = (Scalar‘(ℝfld freeLMod 𝐼))
6 eqid 2824 . . . 4 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
7 rebase 20753 . . . 4 ℝ = (Base‘ℝfld)
8 remulr 20758 . . . 4 · = (.r‘ℝfld)
9 eqid 2824 . . . 4 (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(ℝfld freeLMod 𝐼))
10 eqid 2824 . . . 4 (0g‘(ℝfld freeLMod 𝐼)) = (0g‘(ℝfld freeLMod 𝐼))
11 re0g 20759 . . . 4 0 = (0g‘ℝfld)
12 refldcj 20767 . . . 4 ∗ = (*𝑟‘ℝfld)
13 refld 20766 . . . . 5 fld ∈ Field
1413a1i 11 . . . 4 (𝐼𝑉 → ℝfld ∈ Field)
15 fconstmpt 5617 . . . . 5 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
166, 7, 4frlmbasf 20907 . . . . . . . 8 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓:𝐼⟶ℝ)
1716ffnd 6518 . . . . . . 7 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓 Fn 𝐼)
18173adant3 1128 . . . . . 6 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → 𝑓 Fn 𝐼)
19 simpl 485 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝐼𝑉)
2013a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → ℝfld ∈ Field)
21 simpr 487 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)))
226, 7, 8, 4, 9frlmipval 20926 . . . . . . . . . . . . . . . . 17 (((𝐼𝑉 ∧ ℝfld ∈ Field) ∧ (𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ 𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)))) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = (ℝfld Σg (𝑓f · 𝑓)))
2319, 20, 21, 21, 22syl22anc 836 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = (ℝfld Σg (𝑓f · 𝑓)))
24 inidm 4198 . . . . . . . . . . . . . . . . . . . 20 (𝐼𝐼) = 𝐼
25 eqidd 2825 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → (𝑓𝑥) = (𝑓𝑥))
2617, 17, 19, 19, 24, 25, 25offval 7419 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓f · 𝑓) = (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑓𝑥))))
2716ffvelrnda 6854 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
2827, 27remulcld 10674 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → ((𝑓𝑥) · (𝑓𝑥)) ∈ ℝ)
2926, 28fmpt3d 6883 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓f · 𝑓):𝐼⟶ℝ)
30 ovexd 7194 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓f · 𝑓) ∈ V)
3129ffund 6521 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → Fun (𝑓f · 𝑓))
326, 11, 4frlmbasfsupp 20905 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓 finSupp 0)
33 0red 10647 . . . . . . . . . . . . . . . . . . . 20 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 0 ∈ ℝ)
34 simpr 487 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
3534recnd 10672 . . . . . . . . . . . . . . . . . . . . 21 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
3635mul02d 10841 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ℝ) → (0 · 𝑥) = 0)
3719, 33, 16, 16, 36suppofss1d 7871 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → ((𝑓f · 𝑓) supp 0) ⊆ (𝑓 supp 0))
38 fsuppsssupp 8852 . . . . . . . . . . . . . . . . . . 19 ((((𝑓f · 𝑓) ∈ V ∧ Fun (𝑓f · 𝑓)) ∧ (𝑓 finSupp 0 ∧ ((𝑓f · 𝑓) supp 0) ⊆ (𝑓 supp 0))) → (𝑓f · 𝑓) finSupp 0)
3930, 31, 32, 37, 38syl22anc 836 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓f · 𝑓) finSupp 0)
40 regsumsupp 20769 . . . . . . . . . . . . . . . . . 18 (((𝑓f · 𝑓):𝐼⟶ℝ ∧ (𝑓f · 𝑓) finSupp 0 ∧ 𝐼𝑉) → (ℝfld Σg (𝑓f · 𝑓)) = Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓f · 𝑓)‘𝑥))
4129, 39, 19, 40syl3anc 1367 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (ℝfld Σg (𝑓f · 𝑓)) = Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓f · 𝑓)‘𝑥))
42 suppssdm 7846 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 supp 0) ⊆ dom 𝑓
4342, 16fssdm 6533 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓 supp 0) ⊆ 𝐼)
4437, 43sstrd 3980 . . . . . . . . . . . . . . . . . . . 20 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → ((𝑓f · 𝑓) supp 0) ⊆ 𝐼)
4544sselda 3970 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → 𝑥𝐼)
4617, 17, 19, 19, 24, 25, 25ofval 7421 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → ((𝑓f · 𝑓)‘𝑥) = ((𝑓𝑥) · (𝑓𝑥)))
4745, 46syldan 593 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → ((𝑓f · 𝑓)‘𝑥) = ((𝑓𝑥) · (𝑓𝑥)))
4847sumeq2dv 15063 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓f · 𝑓)‘𝑥) = Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
4941, 48eqtrd 2859 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (ℝfld Σg (𝑓f · 𝑓)) = Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
5023, 49eqtrd 2859 . . . . . . . . . . . . . . 15 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
51503adant3 1128 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
52 simp3 1134 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0)
5351, 52eqtr3d 2861 . . . . . . . . . . . . 13 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0)
5432fsuppimpd 8843 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓 supp 0) ∈ Fin)
5554, 37ssfid 8744 . . . . . . . . . . . . . . 15 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → ((𝑓f · 𝑓) supp 0) ∈ Fin)
5645, 28syldan 593 . . . . . . . . . . . . . . 15 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → ((𝑓𝑥) · (𝑓𝑥)) ∈ ℝ)
5727msqge0d 11211 . . . . . . . . . . . . . . . 16 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → 0 ≤ ((𝑓𝑥) · (𝑓𝑥)))
5845, 57syldan 593 . . . . . . . . . . . . . . 15 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → 0 ≤ ((𝑓𝑥) · (𝑓𝑥)))
5955, 56, 58fsum00 15156 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0 ↔ ∀𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0))
60593adant3 1128 . . . . . . . . . . . . 13 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0 ↔ ∀𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0))
6153, 60mpbid 234 . . . . . . . . . . . 12 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → ∀𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0)
6261r19.21bi 3211 . . . . . . . . . . 11 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → ((𝑓𝑥) · (𝑓𝑥)) = 0)
6362adantlr 713 . . . . . . . . . 10 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → ((𝑓𝑥) · (𝑓𝑥)) = 0)
64273adantl3 1164 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
6564recnd 10672 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℂ)
6665, 65mul0ord 11293 . . . . . . . . . . 11 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (((𝑓𝑥) · (𝑓𝑥)) = 0 ↔ ((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0)))
6766adantr 483 . . . . . . . . . 10 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → (((𝑓𝑥) · (𝑓𝑥)) = 0 ↔ ((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0)))
6863, 67mpbid 234 . . . . . . . . 9 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → ((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0))
69 oridm 901 . . . . . . . . 9 (((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0) ↔ (𝑓𝑥) = 0)
7068, 69sylib 220 . . . . . . . 8 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → (𝑓𝑥) = 0)
71293adant3 1128 . . . . . . . . . . 11 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (𝑓f · 𝑓):𝐼⟶ℝ)
7271adantr 483 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑓f · 𝑓):𝐼⟶ℝ)
73 ssidd 3993 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → ((𝑓f · 𝑓) supp 0) ⊆ ((𝑓f · 𝑓) supp 0))
74 simpl1 1187 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → 𝐼𝑉)
75 0red 10647 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → 0 ∈ ℝ)
7672, 73, 74, 75suppssr 7864 . . . . . . . . 9 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))) → ((𝑓f · 𝑓)‘𝑥) = 0)
77463adantl3 1164 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → ((𝑓f · 𝑓)‘𝑥) = ((𝑓𝑥) · (𝑓𝑥)))
7877eqeq1d 2826 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (((𝑓f · 𝑓)‘𝑥) = 0 ↔ ((𝑓𝑥) · (𝑓𝑥)) = 0))
7978, 66bitrd 281 . . . . . . . . . . 11 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (((𝑓f · 𝑓)‘𝑥) = 0 ↔ ((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0)))
8079, 69syl6bb 289 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (((𝑓f · 𝑓)‘𝑥) = 0 ↔ (𝑓𝑥) = 0))
8180biimpa 479 . . . . . . . . 9 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ ((𝑓f · 𝑓)‘𝑥) = 0) → (𝑓𝑥) = 0)
8276, 81syldan 593 . . . . . . . 8 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))) → (𝑓𝑥) = 0)
83 undif 4433 . . . . . . . . . . . . 13 (((𝑓f · 𝑓) supp 0) ⊆ 𝐼 ↔ (((𝑓f · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))) = 𝐼)
8444, 83sylib 220 . . . . . . . . . . . 12 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (((𝑓f · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))) = 𝐼)
8584eleq2d 2901 . . . . . . . . . . 11 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑥 ∈ (((𝑓f · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))) ↔ 𝑥𝐼))
86853adant3 1128 . . . . . . . . . 10 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (𝑥 ∈ (((𝑓f · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))) ↔ 𝑥𝐼))
8786biimpar 480 . . . . . . . . 9 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → 𝑥 ∈ (((𝑓f · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))))
88 elun 4128 . . . . . . . . 9 (𝑥 ∈ (((𝑓f · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))) ↔ (𝑥 ∈ ((𝑓f · 𝑓) supp 0) ∨ 𝑥 ∈ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))))
8987, 88sylib 220 . . . . . . . 8 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑥 ∈ ((𝑓f · 𝑓) supp 0) ∨ 𝑥 ∈ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))))
9070, 82, 89mpjaodan 955 . . . . . . 7 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑓𝑥) = 0)
9190ralrimiva 3185 . . . . . 6 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → ∀𝑥𝐼 (𝑓𝑥) = 0)
92 fconstfv 6978 . . . . . . 7 (𝑓:𝐼⟶{0} ↔ (𝑓 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑓𝑥) = 0))
93 c0ex 10638 . . . . . . . 8 0 ∈ V
9493fconst2 6970 . . . . . . 7 (𝑓:𝐼⟶{0} ↔ 𝑓 = (𝐼 × {0}))
9592, 94sylbb1 239 . . . . . 6 ((𝑓 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑓𝑥) = 0) → 𝑓 = (𝐼 × {0}))
9618, 91, 95syl2anc 586 . . . . 5 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → 𝑓 = (𝐼 × {0}))
97 isfld 19514 . . . . . . . . . . 11 (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing))
9813, 97mpbi 232 . . . . . . . . . 10 (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing)
9998simpli 486 . . . . . . . . 9 fld ∈ DivRing
100 drngring 19512 . . . . . . . . 9 (ℝfld ∈ DivRing → ℝfld ∈ Ring)
10199, 100ax-mp 5 . . . . . . . 8 fld ∈ Ring
1026, 11frlm0 20901 . . . . . . . 8 ((ℝfld ∈ Ring ∧ 𝐼𝑉) → (𝐼 × {0}) = (0g‘(ℝfld freeLMod 𝐼)))
103101, 102mpan 688 . . . . . . 7 (𝐼𝑉 → (𝐼 × {0}) = (0g‘(ℝfld freeLMod 𝐼)))
10415, 103syl5reqr 2874 . . . . . 6 (𝐼𝑉 → (0g‘(ℝfld freeLMod 𝐼)) = (𝑥𝐼 ↦ 0))
1051043ad2ant1 1129 . . . . 5 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (0g‘(ℝfld freeLMod 𝐼)) = (𝑥𝐼 ↦ 0))
10615, 96, 1053eqtr4a 2885 . . . 4 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → 𝑓 = (0g‘(ℝfld freeLMod 𝐼)))
107 cjre 14501 . . . . 5 (𝑥 ∈ ℝ → (∗‘𝑥) = 𝑥)
108107adantl 484 . . . 4 ((𝐼𝑉𝑥 ∈ ℝ) → (∗‘𝑥) = 𝑥)
109 id 22 . . . 4 (𝐼𝑉𝐼𝑉)
1106, 7, 8, 4, 9, 10, 11, 12, 14, 106, 108, 109frlmphl 20928 . . 3 (𝐼𝑉 → (ℝfld freeLMod 𝐼) ∈ PreHil)
111 df-refld 20752 . . . 4 fld = (ℂflds ℝ)
1126frlmsca 20900 . . . . 5 ((ℝfld ∈ Field ∧ 𝐼𝑉) → ℝfld = (Scalar‘(ℝfld freeLMod 𝐼)))
11313, 112mpan 688 . . . 4 (𝐼𝑉 → ℝfld = (Scalar‘(ℝfld freeLMod 𝐼)))
114111, 113syl5reqr 2874 . . 3 (𝐼𝑉 → (Scalar‘(ℝfld freeLMod 𝐼)) = (ℂflds ℝ))
115 simpr1 1190 . . . 4 ((𝐼𝑉 ∧ (𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓)) → 𝑓 ∈ ℝ)
116 simpr3 1192 . . . 4 ((𝐼𝑉 ∧ (𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓)) → 0 ≤ 𝑓)
117115, 116resqrtcld 14780 . . 3 ((𝐼𝑉 ∧ (𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓)) → (√‘𝑓) ∈ ℝ)
11855, 56, 58fsumge0 15153 . . . . 5 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 0 ≤ Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
119118, 49breqtrrd 5097 . . . 4 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 0 ≤ (ℝfld Σg (𝑓f · 𝑓)))
120119, 23breqtrrd 5097 . . 3 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 0 ≤ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))
1213, 4, 5, 110, 114, 9, 117, 120tcphcph 23843 . 2 (𝐼𝑉 → (toℂPreHil‘(ℝfld freeLMod 𝐼)) ∈ ℂPreHil)
1222, 121eqeltrd 2916 1 (𝐼𝑉𝐻 ∈ ℂPreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1536  wcel 2113  wral 3141  Vcvv 3497  cdif 3936  cun 3937  wss 3939  {csn 4570   class class class wbr 5069  cmpt 5149   × cxp 5556  Fun wfun 6352   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7159  f cof 7410   supp csupp 7833   finSupp cfsupp 8836  cr 10539  0cc0 10540   · cmul 10545  cle 10679  ccj 14458  Σcsu 15045  Basecbs 16486  s cress 16487  Scalarcsca 16571  ·𝑖cip 16573  0gc0g 16716   Σg cgsu 16717  Ringcrg 19300  CRingccrg 19301  DivRingcdr 19505  Fieldcfield 19506  fldccnfld 20548  fldcrefld 20751   freeLMod cfrlm 20893  ℂPreHilccph 23773  toℂPreHilctcph 23774  ℝ^crrx 23989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-tpos 7895  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ico 12747  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-prds 16724  df-pws 16726  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-mhm 17959  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-subg 18279  df-ghm 18359  df-cntz 18450  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-cring 19303  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-dvr 19436  df-rnghom 19470  df-drng 19507  df-field 19508  df-subrg 19536  df-abv 19591  df-staf 19619  df-srng 19620  df-lmod 19639  df-lss 19707  df-lmhm 19797  df-lvec 19878  df-sra 19947  df-rgmod 19948  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-cnfld 20549  df-refld 20752  df-phl 20773  df-dsmm 20879  df-frlm 20894  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-xms 22933  df-ms 22934  df-nm 23195  df-ngp 23196  df-tng 23197  df-nrg 23198  df-nlm 23199  df-clm 23670  df-cph 23775  df-tcph 23776  df-rrx 23991
This theorem is referenced by:  rrxngp  42577
  Copyright terms: Public domain W3C validator