MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxcph Structured version   Visualization version   GIF version

Theorem rrxcph 25426
Description: Generalized Euclidean real spaces are subcomplex pre-Hilbert spaces. (Contributed by Thierry Arnoux, 23-Jun-2019.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxcph (𝐼𝑉𝐻 ∈ ℂPreHil)

Proof of Theorem rrxcph
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxval.r . . 3 𝐻 = (ℝ^‘𝐼)
21rrxval 25421 . 2 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
3 eqid 2737 . . 3 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
4 eqid 2737 . . 3 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
5 eqid 2737 . . 3 (Scalar‘(ℝfld freeLMod 𝐼)) = (Scalar‘(ℝfld freeLMod 𝐼))
6 eqid 2737 . . . 4 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
7 rebase 21624 . . . 4 ℝ = (Base‘ℝfld)
8 remulr 21629 . . . 4 · = (.r‘ℝfld)
9 eqid 2737 . . . 4 (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(ℝfld freeLMod 𝐼))
10 eqid 2737 . . . 4 (0g‘(ℝfld freeLMod 𝐼)) = (0g‘(ℝfld freeLMod 𝐼))
11 re0g 21630 . . . 4 0 = (0g‘ℝfld)
12 refldcj 21638 . . . 4 ∗ = (*𝑟‘ℝfld)
13 refld 21637 . . . . 5 fld ∈ Field
1413a1i 11 . . . 4 (𝐼𝑉 → ℝfld ∈ Field)
15 fconstmpt 5747 . . . . 5 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
166, 7, 4frlmbasf 21780 . . . . . . . 8 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓:𝐼⟶ℝ)
1716ffnd 6737 . . . . . . 7 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓 Fn 𝐼)
18173adant3 1133 . . . . . 6 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → 𝑓 Fn 𝐼)
19 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝐼𝑉)
2013a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → ℝfld ∈ Field)
21 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)))
226, 7, 8, 4, 9frlmipval 21799 . . . . . . . . . . . . . . . . 17 (((𝐼𝑉 ∧ ℝfld ∈ Field) ∧ (𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ 𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)))) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = (ℝfld Σg (𝑓f · 𝑓)))
2319, 20, 21, 21, 22syl22anc 839 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = (ℝfld Σg (𝑓f · 𝑓)))
24 inidm 4227 . . . . . . . . . . . . . . . . . . . 20 (𝐼𝐼) = 𝐼
25 eqidd 2738 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → (𝑓𝑥) = (𝑓𝑥))
2617, 17, 19, 19, 24, 25, 25offval 7706 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓f · 𝑓) = (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑓𝑥))))
2716ffvelcdmda 7104 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
2827, 27remulcld 11291 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → ((𝑓𝑥) · (𝑓𝑥)) ∈ ℝ)
2926, 28fmpt3d 7136 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓f · 𝑓):𝐼⟶ℝ)
30 ovexd 7466 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓f · 𝑓) ∈ V)
3129ffund 6740 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → Fun (𝑓f · 𝑓))
326, 11, 4frlmbasfsupp 21778 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓 finSupp 0)
33 0red 11264 . . . . . . . . . . . . . . . . . . . 20 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 0 ∈ ℝ)
34 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
3534recnd 11289 . . . . . . . . . . . . . . . . . . . . 21 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
3635mul02d 11459 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ℝ) → (0 · 𝑥) = 0)
3719, 33, 16, 16, 36suppofss1d 8229 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → ((𝑓f · 𝑓) supp 0) ⊆ (𝑓 supp 0))
38 fsuppsssupp 9421 . . . . . . . . . . . . . . . . . . 19 ((((𝑓f · 𝑓) ∈ V ∧ Fun (𝑓f · 𝑓)) ∧ (𝑓 finSupp 0 ∧ ((𝑓f · 𝑓) supp 0) ⊆ (𝑓 supp 0))) → (𝑓f · 𝑓) finSupp 0)
3930, 31, 32, 37, 38syl22anc 839 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓f · 𝑓) finSupp 0)
40 regsumsupp 21640 . . . . . . . . . . . . . . . . . 18 (((𝑓f · 𝑓):𝐼⟶ℝ ∧ (𝑓f · 𝑓) finSupp 0 ∧ 𝐼𝑉) → (ℝfld Σg (𝑓f · 𝑓)) = Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓f · 𝑓)‘𝑥))
4129, 39, 19, 40syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (ℝfld Σg (𝑓f · 𝑓)) = Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓f · 𝑓)‘𝑥))
42 suppssdm 8202 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 supp 0) ⊆ dom 𝑓
4342, 16fssdm 6755 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓 supp 0) ⊆ 𝐼)
4437, 43sstrd 3994 . . . . . . . . . . . . . . . . . . . 20 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → ((𝑓f · 𝑓) supp 0) ⊆ 𝐼)
4544sselda 3983 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → 𝑥𝐼)
4617, 17, 19, 19, 24, 25, 25ofval 7708 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → ((𝑓f · 𝑓)‘𝑥) = ((𝑓𝑥) · (𝑓𝑥)))
4745, 46syldan 591 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → ((𝑓f · 𝑓)‘𝑥) = ((𝑓𝑥) · (𝑓𝑥)))
4847sumeq2dv 15738 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓f · 𝑓)‘𝑥) = Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
4941, 48eqtrd 2777 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (ℝfld Σg (𝑓f · 𝑓)) = Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
5023, 49eqtrd 2777 . . . . . . . . . . . . . . 15 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
51503adant3 1133 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
52 simp3 1139 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0)
5351, 52eqtr3d 2779 . . . . . . . . . . . . 13 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0)
5432fsuppimpd 9409 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓 supp 0) ∈ Fin)
5554, 37ssfid 9301 . . . . . . . . . . . . . . 15 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → ((𝑓f · 𝑓) supp 0) ∈ Fin)
5645, 28syldan 591 . . . . . . . . . . . . . . 15 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → ((𝑓𝑥) · (𝑓𝑥)) ∈ ℝ)
5727msqge0d 11831 . . . . . . . . . . . . . . . 16 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → 0 ≤ ((𝑓𝑥) · (𝑓𝑥)))
5845, 57syldan 591 . . . . . . . . . . . . . . 15 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → 0 ≤ ((𝑓𝑥) · (𝑓𝑥)))
5955, 56, 58fsum00 15834 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0 ↔ ∀𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0))
60593adant3 1133 . . . . . . . . . . . . 13 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0 ↔ ∀𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0))
6153, 60mpbid 232 . . . . . . . . . . . 12 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → ∀𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0)
6261r19.21bi 3251 . . . . . . . . . . 11 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → ((𝑓𝑥) · (𝑓𝑥)) = 0)
6362adantlr 715 . . . . . . . . . 10 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → ((𝑓𝑥) · (𝑓𝑥)) = 0)
64273adantl3 1169 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
6564recnd 11289 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℂ)
6665, 65mul0ord 11913 . . . . . . . . . . 11 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (((𝑓𝑥) · (𝑓𝑥)) = 0 ↔ ((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0)))
6766adantr 480 . . . . . . . . . 10 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → (((𝑓𝑥) · (𝑓𝑥)) = 0 ↔ ((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0)))
6863, 67mpbid 232 . . . . . . . . 9 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → ((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0))
69 oridm 905 . . . . . . . . 9 (((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0) ↔ (𝑓𝑥) = 0)
7068, 69sylib 218 . . . . . . . 8 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → (𝑓𝑥) = 0)
71293adant3 1133 . . . . . . . . . . 11 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (𝑓f · 𝑓):𝐼⟶ℝ)
7271adantr 480 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑓f · 𝑓):𝐼⟶ℝ)
73 ssidd 4007 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → ((𝑓f · 𝑓) supp 0) ⊆ ((𝑓f · 𝑓) supp 0))
74 simpl1 1192 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → 𝐼𝑉)
75 0red 11264 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → 0 ∈ ℝ)
7672, 73, 74, 75suppssr 8220 . . . . . . . . 9 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))) → ((𝑓f · 𝑓)‘𝑥) = 0)
77463adantl3 1169 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → ((𝑓f · 𝑓)‘𝑥) = ((𝑓𝑥) · (𝑓𝑥)))
7877eqeq1d 2739 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (((𝑓f · 𝑓)‘𝑥) = 0 ↔ ((𝑓𝑥) · (𝑓𝑥)) = 0))
7978, 66bitrd 279 . . . . . . . . . . 11 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (((𝑓f · 𝑓)‘𝑥) = 0 ↔ ((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0)))
8079, 69bitrdi 287 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (((𝑓f · 𝑓)‘𝑥) = 0 ↔ (𝑓𝑥) = 0))
8180biimpa 476 . . . . . . . . 9 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ ((𝑓f · 𝑓)‘𝑥) = 0) → (𝑓𝑥) = 0)
8276, 81syldan 591 . . . . . . . 8 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))) → (𝑓𝑥) = 0)
83 undif 4482 . . . . . . . . . . . . 13 (((𝑓f · 𝑓) supp 0) ⊆ 𝐼 ↔ (((𝑓f · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))) = 𝐼)
8444, 83sylib 218 . . . . . . . . . . . 12 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (((𝑓f · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))) = 𝐼)
8584eleq2d 2827 . . . . . . . . . . 11 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑥 ∈ (((𝑓f · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))) ↔ 𝑥𝐼))
86853adant3 1133 . . . . . . . . . 10 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (𝑥 ∈ (((𝑓f · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))) ↔ 𝑥𝐼))
8786biimpar 477 . . . . . . . . 9 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → 𝑥 ∈ (((𝑓f · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))))
88 elun 4153 . . . . . . . . 9 (𝑥 ∈ (((𝑓f · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))) ↔ (𝑥 ∈ ((𝑓f · 𝑓) supp 0) ∨ 𝑥 ∈ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))))
8987, 88sylib 218 . . . . . . . 8 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑥 ∈ ((𝑓f · 𝑓) supp 0) ∨ 𝑥 ∈ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))))
9070, 82, 89mpjaodan 961 . . . . . . 7 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑓𝑥) = 0)
9190ralrimiva 3146 . . . . . 6 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → ∀𝑥𝐼 (𝑓𝑥) = 0)
92 fconstfv 7232 . . . . . . 7 (𝑓:𝐼⟶{0} ↔ (𝑓 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑓𝑥) = 0))
93 c0ex 11255 . . . . . . . 8 0 ∈ V
9493fconst2 7225 . . . . . . 7 (𝑓:𝐼⟶{0} ↔ 𝑓 = (𝐼 × {0}))
9592, 94sylbb1 237 . . . . . 6 ((𝑓 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑓𝑥) = 0) → 𝑓 = (𝐼 × {0}))
9618, 91, 95syl2anc 584 . . . . 5 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → 𝑓 = (𝐼 × {0}))
97 isfld 20740 . . . . . . . . . . 11 (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing))
9813, 97mpbi 230 . . . . . . . . . 10 (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing)
9998simpli 483 . . . . . . . . 9 fld ∈ DivRing
100 drngring 20736 . . . . . . . . 9 (ℝfld ∈ DivRing → ℝfld ∈ Ring)
10199, 100ax-mp 5 . . . . . . . 8 fld ∈ Ring
1026, 11frlm0 21774 . . . . . . . 8 ((ℝfld ∈ Ring ∧ 𝐼𝑉) → (𝐼 × {0}) = (0g‘(ℝfld freeLMod 𝐼)))
103101, 102mpan 690 . . . . . . 7 (𝐼𝑉 → (𝐼 × {0}) = (0g‘(ℝfld freeLMod 𝐼)))
104103, 15eqtr3di 2792 . . . . . 6 (𝐼𝑉 → (0g‘(ℝfld freeLMod 𝐼)) = (𝑥𝐼 ↦ 0))
1051043ad2ant1 1134 . . . . 5 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (0g‘(ℝfld freeLMod 𝐼)) = (𝑥𝐼 ↦ 0))
10615, 96, 1053eqtr4a 2803 . . . 4 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → 𝑓 = (0g‘(ℝfld freeLMod 𝐼)))
107 cjre 15178 . . . . 5 (𝑥 ∈ ℝ → (∗‘𝑥) = 𝑥)
108107adantl 481 . . . 4 ((𝐼𝑉𝑥 ∈ ℝ) → (∗‘𝑥) = 𝑥)
109 id 22 . . . 4 (𝐼𝑉𝐼𝑉)
1106, 7, 8, 4, 9, 10, 11, 12, 14, 106, 108, 109frlmphl 21801 . . 3 (𝐼𝑉 → (ℝfld freeLMod 𝐼) ∈ PreHil)
1116frlmsca 21773 . . . . 5 ((ℝfld ∈ Field ∧ 𝐼𝑉) → ℝfld = (Scalar‘(ℝfld freeLMod 𝐼)))
11213, 111mpan 690 . . . 4 (𝐼𝑉 → ℝfld = (Scalar‘(ℝfld freeLMod 𝐼)))
113 df-refld 21623 . . . 4 fld = (ℂflds ℝ)
114112, 113eqtr3di 2792 . . 3 (𝐼𝑉 → (Scalar‘(ℝfld freeLMod 𝐼)) = (ℂflds ℝ))
115 simpr1 1195 . . . 4 ((𝐼𝑉 ∧ (𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓)) → 𝑓 ∈ ℝ)
116 simpr3 1197 . . . 4 ((𝐼𝑉 ∧ (𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓)) → 0 ≤ 𝑓)
117115, 116resqrtcld 15456 . . 3 ((𝐼𝑉 ∧ (𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓)) → (√‘𝑓) ∈ ℝ)
11855, 56, 58fsumge0 15831 . . . . 5 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 0 ≤ Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
119118, 49breqtrrd 5171 . . . 4 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 0 ≤ (ℝfld Σg (𝑓f · 𝑓)))
120119, 23breqtrrd 5171 . . 3 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 0 ≤ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))
1213, 4, 5, 110, 114, 9, 117, 120tcphcph 25271 . 2 (𝐼𝑉 → (toℂPreHil‘(ℝfld freeLMod 𝐼)) ∈ ℂPreHil)
1222, 121eqeltrd 2841 1 (𝐼𝑉𝐻 ∈ ℂPreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  cdif 3948  cun 3949  wss 3951  {csn 4626   class class class wbr 5143  cmpt 5225   × cxp 5683  Fun wfun 6555   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695   supp csupp 8185   finSupp cfsupp 9401  cr 11154  0cc0 11155   · cmul 11160  cle 11296  ccj 15135  Σcsu 15722  Basecbs 17247  s cress 17274  Scalarcsca 17300  ·𝑖cip 17302  0gc0g 17484   Σg cgsu 17485  Ringcrg 20230  CRingccrg 20231  DivRingcdr 20729  Fieldcfield 20730  fldccnfld 21364  fldcrefld 21622   freeLMod cfrlm 21766  ℂPreHilccph 25200  toℂPreHilctcph 25201  ℝ^crrx 25417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ico 13393  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-prds 17492  df-pws 17494  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-drng 20731  df-field 20732  df-abv 20810  df-staf 20840  df-srng 20841  df-lmod 20860  df-lss 20930  df-lmhm 21021  df-lvec 21102  df-sra 21172  df-rgmod 21173  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-refld 21623  df-phl 21644  df-dsmm 21752  df-frlm 21767  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-xms 24330  df-ms 24331  df-nm 24595  df-ngp 24596  df-tng 24597  df-nrg 24598  df-nlm 24599  df-clm 25096  df-cph 25202  df-tcph 25203  df-rrx 25419
This theorem is referenced by:  rrxngp  46300
  Copyright terms: Public domain W3C validator