Step | Hyp | Ref
| Expression |
1 | | rrxval.r |
. . 3
⊢ 𝐻 = (ℝ^‘𝐼) |
2 | 1 | rrxval 23593 |
. 2
⊢ (𝐼 ∈ 𝑉 → 𝐻 =
(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
3 | | eqid 2778 |
. . 3
⊢
(toℂPreHil‘(ℝfld freeLMod 𝐼)) =
(toℂPreHil‘(ℝfld freeLMod 𝐼)) |
4 | | eqid 2778 |
. . 3
⊢
(Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld
freeLMod 𝐼)) |
5 | | eqid 2778 |
. . 3
⊢
(Scalar‘(ℝfld freeLMod 𝐼)) = (Scalar‘(ℝfld
freeLMod 𝐼)) |
6 | | eqid 2778 |
. . . 4
⊢
(ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼) |
7 | | rebase 20349 |
. . . 4
⊢ ℝ =
(Base‘ℝfld) |
8 | | remulr 20354 |
. . . 4
⊢ ·
= (.r‘ℝfld) |
9 | | eqid 2778 |
. . . 4
⊢
(·𝑖‘(ℝfld
freeLMod 𝐼)) =
(·𝑖‘(ℝfld freeLMod
𝐼)) |
10 | | eqid 2778 |
. . . 4
⊢
(0g‘(ℝfld freeLMod 𝐼)) =
(0g‘(ℝfld freeLMod 𝐼)) |
11 | | re0g 20355 |
. . . 4
⊢ 0 =
(0g‘ℝfld) |
12 | | refldcj 20363 |
. . . 4
⊢ ∗
= (*𝑟‘ℝfld) |
13 | | refld 20362 |
. . . . 5
⊢
ℝfld ∈ Field |
14 | 13 | a1i 11 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → ℝfld ∈
Field) |
15 | | fconstmpt 5411 |
. . . . 5
⊢ (𝐼 × {0}) = (𝑥 ∈ 𝐼 ↦ 0) |
16 | 6, 7, 4 | frlmbasf 20503 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) → 𝑓:𝐼⟶ℝ) |
17 | 16 | ffnd 6292 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) → 𝑓 Fn 𝐼) |
18 | 17 | 3adant3 1123 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) → 𝑓 Fn 𝐼) |
19 | | simpl 476 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) → 𝐼 ∈ 𝑉) |
20 | 13 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) →
ℝfld ∈ Field) |
21 | | simpr 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) → 𝑓 ∈
(Base‘(ℝfld freeLMod 𝐼))) |
22 | 6, 7, 8, 4, 9 | frlmipval 20522 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐼 ∈ 𝑉 ∧ ℝfld ∈ Field)
∧ (𝑓 ∈
(Base‘(ℝfld freeLMod 𝐼)) ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)))) →
(𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = (ℝfld Σg (𝑓 ∘𝑓 · 𝑓))) |
23 | 19, 20, 21, 21, 22 | syl22anc 829 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) → (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = (ℝfld Σg (𝑓 ∘𝑓 · 𝑓))) |
24 | | ovexd 6956 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) ∧ 𝑥 ∈ 𝐼) → ((𝑓‘𝑥) · (𝑓‘𝑥)) ∈ V) |
25 | | inidm 4043 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
26 | | eqidd 2779 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) ∧ 𝑥 ∈ 𝐼) → (𝑓‘𝑥) = (𝑓‘𝑥)) |
27 | 17, 17, 19, 19, 25, 26, 26 | offval 7181 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) → (𝑓 ∘𝑓
· 𝑓) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑓‘𝑥)))) |
28 | 17, 17, 19, 19, 25, 26, 26 | ofval 7183 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) ∧ 𝑥 ∈ 𝐼) → ((𝑓 ∘𝑓 · 𝑓)‘𝑥) = ((𝑓‘𝑥) · (𝑓‘𝑥))) |
29 | 16 | ffvelrnda 6623 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) ∧ 𝑥 ∈ 𝐼) → (𝑓‘𝑥) ∈ ℝ) |
30 | 29, 29 | remulcld 10407 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) ∧ 𝑥 ∈ 𝐼) → ((𝑓‘𝑥) · (𝑓‘𝑥)) ∈ ℝ) |
31 | 28, 30 | eqeltrd 2859 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) ∧ 𝑥 ∈ 𝐼) → ((𝑓 ∘𝑓 · 𝑓)‘𝑥) ∈ ℝ) |
32 | 24, 27, 31 | fmpt2d 6657 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) → (𝑓 ∘𝑓
· 𝑓):𝐼⟶ℝ) |
33 | | ovexd 6956 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) → (𝑓 ∘𝑓
· 𝑓) ∈
V) |
34 | 32 | ffund 6295 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) → Fun
(𝑓
∘𝑓 · 𝑓)) |
35 | 6, 11, 4 | frlmbasfsupp 20501 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) → 𝑓 finSupp 0) |
36 | | 0red 10380 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) → 0
∈ ℝ) |
37 | | simpr 479 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈
ℝ) |
38 | 37 | recnd 10405 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈
ℂ) |
39 | 38 | mul02d 10574 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) ∧ 𝑥 ∈ ℝ) → (0
· 𝑥) =
0) |
40 | 19, 36, 16, 16, 39 | suppofss1d 7614 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) →
((𝑓
∘𝑓 · 𝑓) supp 0) ⊆ (𝑓 supp 0)) |
41 | | fsuppsssupp 8579 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑓 ∘𝑓
· 𝑓) ∈ V ∧
Fun (𝑓
∘𝑓 · 𝑓)) ∧ (𝑓 finSupp 0 ∧ ((𝑓 ∘𝑓 · 𝑓) supp 0) ⊆ (𝑓 supp 0))) → (𝑓 ∘𝑓
· 𝑓) finSupp
0) |
42 | 33, 34, 35, 40, 41 | syl22anc 829 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) → (𝑓 ∘𝑓
· 𝑓) finSupp
0) |
43 | | regsumsupp 20365 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓 ∘𝑓
· 𝑓):𝐼⟶ℝ ∧ (𝑓 ∘𝑓
· 𝑓) finSupp 0 ∧
𝐼 ∈ 𝑉) → (ℝfld
Σg (𝑓 ∘𝑓 · 𝑓)) = Σ𝑥 ∈ ((𝑓 ∘𝑓 · 𝑓) supp 0)((𝑓 ∘𝑓 · 𝑓)‘𝑥)) |
44 | 32, 42, 19, 43 | syl3anc 1439 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) →
(ℝfld Σg (𝑓 ∘𝑓 · 𝑓)) = Σ𝑥 ∈ ((𝑓 ∘𝑓 · 𝑓) supp 0)((𝑓 ∘𝑓 · 𝑓)‘𝑥)) |
45 | | suppssdm 7589 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 supp 0) ⊆ dom 𝑓 |
46 | 45, 16 | fssdm 6307 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) → (𝑓 supp 0) ⊆ 𝐼) |
47 | 40, 46 | sstrd 3831 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) →
((𝑓
∘𝑓 · 𝑓) supp 0) ⊆ 𝐼) |
48 | 47 | sselda 3821 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓 ∘𝑓 · 𝑓) supp 0)) → 𝑥 ∈ 𝐼) |
49 | 48, 28 | syldan 585 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓 ∘𝑓 · 𝑓) supp 0)) → ((𝑓 ∘𝑓
· 𝑓)‘𝑥) = ((𝑓‘𝑥) · (𝑓‘𝑥))) |
50 | 49 | sumeq2dv 14841 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) →
Σ𝑥 ∈ ((𝑓 ∘𝑓
· 𝑓) supp 0)((𝑓 ∘𝑓
· 𝑓)‘𝑥) = Σ𝑥 ∈ ((𝑓 ∘𝑓 · 𝑓) supp 0)((𝑓‘𝑥) · (𝑓‘𝑥))) |
51 | 44, 50 | eqtrd 2814 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) →
(ℝfld Σg (𝑓 ∘𝑓 · 𝑓)) = Σ𝑥 ∈ ((𝑓 ∘𝑓 · 𝑓) supp 0)((𝑓‘𝑥) · (𝑓‘𝑥))) |
52 | 23, 51 | eqtrd 2814 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) → (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = Σ𝑥
∈ ((𝑓 ∘𝑓 ·
𝑓) supp 0)((𝑓‘𝑥)
· (𝑓‘𝑥))) |
53 | 52 | 3adant3 1123 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) → (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = Σ𝑥
∈ ((𝑓 ∘𝑓 ·
𝑓) supp 0)((𝑓‘𝑥)
· (𝑓‘𝑥))) |
54 | | simp3 1129 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) → (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) |
55 | 53, 54 | eqtr3d 2816 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) → Σ𝑥 ∈ ((𝑓
∘𝑓 · 𝑓) supp
0)((𝑓‘𝑥) · (𝑓‘𝑥)) =
0) |
56 | 35 | fsuppimpd 8570 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) → (𝑓 supp 0) ∈
Fin) |
57 | | ssfi 8468 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓 supp 0) ∈ Fin ∧
((𝑓
∘𝑓 · 𝑓) supp 0) ⊆ (𝑓 supp 0)) → ((𝑓 ∘𝑓 · 𝑓) supp 0) ∈
Fin) |
58 | 56, 40, 57 | syl2anc 579 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) →
((𝑓
∘𝑓 · 𝑓) supp 0) ∈ Fin) |
59 | 48, 30 | syldan 585 |
. . . . . . . . . . . . . . 15
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓 ∘𝑓 · 𝑓) supp 0)) → ((𝑓‘𝑥) · (𝑓‘𝑥)) ∈ ℝ) |
60 | 29 | msqge0d 10943 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) ∧ 𝑥 ∈ 𝐼) → 0 ≤ ((𝑓‘𝑥) · (𝑓‘𝑥))) |
61 | 48, 60 | syldan 585 |
. . . . . . . . . . . . . . 15
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓 ∘𝑓 · 𝑓) supp 0)) → 0 ≤ ((𝑓‘𝑥) · (𝑓‘𝑥))) |
62 | 58, 59, 61 | fsum00 14934 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) →
(Σ𝑥 ∈ ((𝑓 ∘𝑓
· 𝑓) supp 0)((𝑓‘𝑥) · (𝑓‘𝑥)) = 0 ↔ ∀𝑥 ∈ ((𝑓 ∘𝑓 · 𝑓) supp 0)((𝑓‘𝑥) · (𝑓‘𝑥)) = 0)) |
63 | 62 | 3adant3 1123 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) → (Σ𝑥 ∈ ((𝑓
∘𝑓 · 𝑓) supp
0)((𝑓‘𝑥) · (𝑓‘𝑥)) =
0 ↔ ∀𝑥 ∈ ((𝑓 ∘𝑓 · 𝑓) supp 0)((𝑓‘𝑥)
· (𝑓‘𝑥)) = 0)) |
64 | 55, 63 | mpbid 224 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) → ∀𝑥 ∈ ((𝑓
∘𝑓 · 𝑓) supp
0)((𝑓‘𝑥) · (𝑓‘𝑥)) =
0) |
65 | 64 | r19.21bi 3114 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ ((𝑓
∘𝑓 · 𝑓) supp
0)) → ((𝑓‘𝑥) · (𝑓‘𝑥)) =
0) |
66 | 65 | adantlr 705 |
. . . . . . . . . 10
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ 𝐼)
∧ 𝑥 ∈ ((𝑓 ∘𝑓 · 𝑓) supp 0)) → ((𝑓‘𝑥)
· (𝑓‘𝑥)) = 0) |
67 | 29 | 3adantl3 1170 |
. . . . . . . . . . . . 13
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ 𝐼)
→ (𝑓‘𝑥) ∈ ℝ) |
68 | 67 | recnd 10405 |
. . . . . . . . . . . 12
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ 𝐼)
→ (𝑓‘𝑥) ∈ ℂ) |
69 | 68, 68 | mul0ord 11025 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ 𝐼)
→ (((𝑓‘𝑥) · (𝑓‘𝑥)) =
0 ↔ ((𝑓‘𝑥) = 0 ∨ (𝑓‘𝑥) =
0))) |
70 | 69 | adantr 474 |
. . . . . . . . . 10
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ 𝐼)
∧ 𝑥 ∈ ((𝑓 ∘𝑓 · 𝑓) supp 0)) → (((𝑓‘𝑥)
· (𝑓‘𝑥)) = 0 ↔ ((𝑓‘𝑥) = 0
∨ (𝑓‘𝑥) = 0))) |
71 | 66, 70 | mpbid 224 |
. . . . . . . . 9
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ 𝐼)
∧ 𝑥 ∈ ((𝑓 ∘𝑓 · 𝑓) supp 0)) → ((𝑓‘𝑥) = 0
∨ (𝑓‘𝑥) = 0)) |
72 | | oridm 891 |
. . . . . . . . 9
⊢ (((𝑓‘𝑥) = 0 ∨ (𝑓‘𝑥) = 0) ↔ (𝑓‘𝑥) = 0) |
73 | 71, 72 | sylib 210 |
. . . . . . . 8
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ 𝐼)
∧ 𝑥 ∈ ((𝑓 ∘𝑓 · 𝑓) supp 0)) → (𝑓‘𝑥) =
0) |
74 | 32 | 3adant3 1123 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) → (𝑓 ∘𝑓 · 𝑓):𝐼⟶ℝ) |
75 | 74 | adantr 474 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ 𝐼)
→ (𝑓 ∘𝑓 ·
𝑓):𝐼⟶ℝ) |
76 | | ssidd 3843 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ 𝐼)
→ ((𝑓 ∘𝑓 ·
𝑓) supp 0) ⊆ ((𝑓 ∘𝑓 · 𝑓) supp 0)) |
77 | | simpl1 1199 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ 𝐼)
→ 𝐼 ∈ 𝑉) |
78 | | 0red 10380 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ 𝐼)
→ 0 ∈ ℝ) |
79 | 75, 76, 77, 78 | suppssr 7608 |
. . . . . . . . 9
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ 𝐼)
∧ 𝑥 ∈ (𝐼 ∖ ((𝑓
∘𝑓 · 𝑓) supp
0))) → ((𝑓 ∘𝑓
· 𝑓)‘𝑥) = 0) |
80 | 28 | 3adantl3 1170 |
. . . . . . . . . . . . 13
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ 𝐼)
→ ((𝑓 ∘𝑓 ·
𝑓)‘𝑥) = ((𝑓‘𝑥)
· (𝑓‘𝑥))) |
81 | 80 | eqeq1d 2780 |
. . . . . . . . . . . 12
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ 𝐼)
→ (((𝑓 ∘𝑓
· 𝑓)‘𝑥) = 0 ↔ ((𝑓‘𝑥)
· (𝑓‘𝑥)) = 0)) |
82 | 81, 69 | bitrd 271 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ 𝐼)
→ (((𝑓 ∘𝑓
· 𝑓)‘𝑥) = 0 ↔ ((𝑓‘𝑥) = 0
∨ (𝑓‘𝑥) = 0))) |
83 | 82, 72 | syl6bb 279 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ 𝐼)
→ (((𝑓 ∘𝑓
· 𝑓)‘𝑥) = 0 ↔ (𝑓‘𝑥) =
0)) |
84 | 83 | biimpa 470 |
. . . . . . . . 9
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ 𝐼)
∧ ((𝑓 ∘𝑓 ·
𝑓)‘𝑥) = 0) → (𝑓‘𝑥) =
0) |
85 | 79, 84 | syldan 585 |
. . . . . . . 8
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ 𝐼)
∧ 𝑥 ∈ (𝐼 ∖ ((𝑓
∘𝑓 · 𝑓) supp
0))) → (𝑓‘𝑥) = 0) |
86 | | undif 4273 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∘𝑓
· 𝑓) supp 0) ⊆
𝐼 ↔ (((𝑓 ∘𝑓
· 𝑓) supp 0) ∪
(𝐼 ∖ ((𝑓 ∘𝑓
· 𝑓) supp 0))) =
𝐼) |
87 | 47, 86 | sylib 210 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) →
(((𝑓
∘𝑓 · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓 ∘𝑓 · 𝑓) supp 0))) = 𝐼) |
88 | 87 | eleq2d 2845 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) → (𝑥 ∈ (((𝑓 ∘𝑓 · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓 ∘𝑓 · 𝑓) supp 0))) ↔ 𝑥 ∈ 𝐼)) |
89 | 88 | 3adant3 1123 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) → (𝑥 ∈ (((𝑓
∘𝑓 · 𝑓) supp 0)
∪ (𝐼 ∖ ((𝑓 ∘𝑓 · 𝑓) supp 0))) ↔ 𝑥 ∈ 𝐼)) |
90 | 89 | biimpar 471 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ 𝐼)
→ 𝑥 ∈ (((𝑓 ∘𝑓 · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓
∘𝑓 · 𝑓) supp
0)))) |
91 | | elun 3976 |
. . . . . . . . 9
⊢ (𝑥 ∈ (((𝑓 ∘𝑓 · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓 ∘𝑓 · 𝑓) supp 0))) ↔ (𝑥 ∈ ((𝑓 ∘𝑓 · 𝑓) supp 0) ∨ 𝑥 ∈ (𝐼 ∖ ((𝑓 ∘𝑓 · 𝑓) supp 0)))) |
92 | 90, 91 | sylib 210 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ 𝐼)
→ (𝑥 ∈ ((𝑓 ∘𝑓 · 𝑓) supp 0) ∨ 𝑥 ∈ (𝐼
∖ ((𝑓 ∘𝑓
· 𝑓) supp 0)))) |
93 | 73, 85, 92 | mpjaodan 944 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ 𝐼)
→ (𝑓‘𝑥) = 0) |
94 | 93 | ralrimiva 3148 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) → ∀𝑥 ∈ 𝐼
(𝑓‘𝑥) = 0) |
95 | | fconstfv 6748 |
. . . . . . 7
⊢ (𝑓:𝐼⟶{0} ↔ (𝑓 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥) = 0)) |
96 | | c0ex 10370 |
. . . . . . . 8
⊢ 0 ∈
V |
97 | 96 | fconst2 6742 |
. . . . . . 7
⊢ (𝑓:𝐼⟶{0} ↔ 𝑓 = (𝐼 × {0})) |
98 | 95, 97 | sylbb1 229 |
. . . . . 6
⊢ ((𝑓 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥) = 0) → 𝑓 = (𝐼 × {0})) |
99 | 18, 94, 98 | syl2anc 579 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) → 𝑓 = (𝐼 ×
{0})) |
100 | | isfld 19148 |
. . . . . . . . . . 11
⊢
(ℝfld ∈ Field ↔ (ℝfld ∈
DivRing ∧ ℝfld ∈ CRing)) |
101 | 13, 100 | mpbi 222 |
. . . . . . . . . 10
⊢
(ℝfld ∈ DivRing ∧ ℝfld ∈
CRing) |
102 | 101 | simpli 478 |
. . . . . . . . 9
⊢
ℝfld ∈ DivRing |
103 | | drngring 19146 |
. . . . . . . . 9
⊢
(ℝfld ∈ DivRing → ℝfld
∈ Ring) |
104 | 102, 103 | ax-mp 5 |
. . . . . . . 8
⊢
ℝfld ∈ Ring |
105 | 6, 11 | frlm0 20497 |
. . . . . . . 8
⊢
((ℝfld ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝐼 × {0}) =
(0g‘(ℝfld freeLMod 𝐼))) |
106 | 104, 105 | mpan 680 |
. . . . . . 7
⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}) =
(0g‘(ℝfld freeLMod 𝐼))) |
107 | 15, 106 | syl5reqr 2829 |
. . . . . 6
⊢ (𝐼 ∈ 𝑉 →
(0g‘(ℝfld freeLMod 𝐼)) = (𝑥 ∈ 𝐼 ↦ 0)) |
108 | 107 | 3ad2ant1 1124 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) → (0g‘(ℝfld
freeLMod 𝐼)) = (𝑥 ∈ 𝐼
↦ 0)) |
109 | 15, 99, 108 | 3eqtr4a 2840 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓) = 0) → 𝑓 = (0g‘(ℝfld freeLMod 𝐼))) |
110 | | cjre 14286 |
. . . . 5
⊢ (𝑥 ∈ ℝ →
(∗‘𝑥) = 𝑥) |
111 | 110 | adantl 475 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ℝ) → (∗‘𝑥) = 𝑥) |
112 | | id 22 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ 𝑉) |
113 | 6, 7, 8, 4, 9, 10,
11, 12, 14, 109, 111, 112 | frlmphl 20524 |
. . 3
⊢ (𝐼 ∈ 𝑉 → (ℝfld freeLMod
𝐼) ∈
PreHil) |
114 | | df-refld 20348 |
. . . 4
⊢
ℝfld = (ℂfld ↾s
ℝ) |
115 | 6 | frlmsca 20496 |
. . . . 5
⊢
((ℝfld ∈ Field ∧ 𝐼 ∈ 𝑉) → ℝfld =
(Scalar‘(ℝfld freeLMod 𝐼))) |
116 | 13, 115 | mpan 680 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → ℝfld =
(Scalar‘(ℝfld freeLMod 𝐼))) |
117 | 114, 116 | syl5reqr 2829 |
. . 3
⊢ (𝐼 ∈ 𝑉 → (Scalar‘(ℝfld
freeLMod 𝐼)) =
(ℂfld ↾s ℝ)) |
118 | | simpr1 1205 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓)) → 𝑓 ∈ ℝ) |
119 | | simpr3 1209 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓)) → 0 ≤ 𝑓) |
120 | 118, 119 | resqrtcld 14564 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓)) → (√‘𝑓) ∈
ℝ) |
121 | 58, 59, 61 | fsumge0 14931 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) → 0 ≤
Σ𝑥 ∈ ((𝑓 ∘𝑓
· 𝑓) supp 0)((𝑓‘𝑥) · (𝑓‘𝑥))) |
122 | 121, 51 | breqtrrd 4914 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) → 0 ≤
(ℝfld Σg (𝑓 ∘𝑓 · 𝑓))) |
123 | 122, 23 | breqtrrd 4914 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) → 0 ≤
(𝑓(·𝑖‘(ℝfld
freeLMod 𝐼))𝑓)) |
124 | 3, 4, 5, 113, 117, 9, 120, 123 | tcphcph 23443 |
. 2
⊢ (𝐼 ∈ 𝑉 →
(toℂPreHil‘(ℝfld freeLMod 𝐼)) ∈ ℂPreHil) |
125 | 2, 124 | eqeltrd 2859 |
1
⊢ (𝐼 ∈ 𝑉 → 𝐻 ∈ ℂPreHil) |