MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxcph Structured version   Visualization version   GIF version

Theorem rrxcph 23989
Description: Generalized Euclidean real spaces are subcomplex pre-Hilbert spaces. (Contributed by Thierry Arnoux, 23-Jun-2019.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxcph (𝐼𝑉𝐻 ∈ ℂPreHil)

Proof of Theorem rrxcph
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxval.r . . 3 𝐻 = (ℝ^‘𝐼)
21rrxval 23984 . 2 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
3 eqid 2821 . . 3 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
4 eqid 2821 . . 3 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
5 eqid 2821 . . 3 (Scalar‘(ℝfld freeLMod 𝐼)) = (Scalar‘(ℝfld freeLMod 𝐼))
6 eqid 2821 . . . 4 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
7 rebase 20744 . . . 4 ℝ = (Base‘ℝfld)
8 remulr 20749 . . . 4 · = (.r‘ℝfld)
9 eqid 2821 . . . 4 (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(ℝfld freeLMod 𝐼))
10 eqid 2821 . . . 4 (0g‘(ℝfld freeLMod 𝐼)) = (0g‘(ℝfld freeLMod 𝐼))
11 re0g 20750 . . . 4 0 = (0g‘ℝfld)
12 refldcj 20758 . . . 4 ∗ = (*𝑟‘ℝfld)
13 refld 20757 . . . . 5 fld ∈ Field
1413a1i 11 . . . 4 (𝐼𝑉 → ℝfld ∈ Field)
15 fconstmpt 5608 . . . . 5 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
166, 7, 4frlmbasf 20898 . . . . . . . 8 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓:𝐼⟶ℝ)
1716ffnd 6509 . . . . . . 7 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓 Fn 𝐼)
18173adant3 1128 . . . . . 6 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → 𝑓 Fn 𝐼)
19 simpl 485 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝐼𝑉)
2013a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → ℝfld ∈ Field)
21 simpr 487 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)))
226, 7, 8, 4, 9frlmipval 20917 . . . . . . . . . . . . . . . . 17 (((𝐼𝑉 ∧ ℝfld ∈ Field) ∧ (𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ 𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)))) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = (ℝfld Σg (𝑓f · 𝑓)))
2319, 20, 21, 21, 22syl22anc 836 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = (ℝfld Σg (𝑓f · 𝑓)))
24 inidm 4194 . . . . . . . . . . . . . . . . . . . 20 (𝐼𝐼) = 𝐼
25 eqidd 2822 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → (𝑓𝑥) = (𝑓𝑥))
2617, 17, 19, 19, 24, 25, 25offval 7410 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓f · 𝑓) = (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑓𝑥))))
2716ffvelrnda 6845 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
2827, 27remulcld 10665 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → ((𝑓𝑥) · (𝑓𝑥)) ∈ ℝ)
2926, 28fmpt3d 6874 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓f · 𝑓):𝐼⟶ℝ)
30 ovexd 7185 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓f · 𝑓) ∈ V)
3129ffund 6512 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → Fun (𝑓f · 𝑓))
326, 11, 4frlmbasfsupp 20896 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓 finSupp 0)
33 0red 10638 . . . . . . . . . . . . . . . . . . . 20 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 0 ∈ ℝ)
34 simpr 487 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
3534recnd 10663 . . . . . . . . . . . . . . . . . . . . 21 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
3635mul02d 10832 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ℝ) → (0 · 𝑥) = 0)
3719, 33, 16, 16, 36suppofss1d 7862 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → ((𝑓f · 𝑓) supp 0) ⊆ (𝑓 supp 0))
38 fsuppsssupp 8843 . . . . . . . . . . . . . . . . . . 19 ((((𝑓f · 𝑓) ∈ V ∧ Fun (𝑓f · 𝑓)) ∧ (𝑓 finSupp 0 ∧ ((𝑓f · 𝑓) supp 0) ⊆ (𝑓 supp 0))) → (𝑓f · 𝑓) finSupp 0)
3930, 31, 32, 37, 38syl22anc 836 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓f · 𝑓) finSupp 0)
40 regsumsupp 20760 . . . . . . . . . . . . . . . . . 18 (((𝑓f · 𝑓):𝐼⟶ℝ ∧ (𝑓f · 𝑓) finSupp 0 ∧ 𝐼𝑉) → (ℝfld Σg (𝑓f · 𝑓)) = Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓f · 𝑓)‘𝑥))
4129, 39, 19, 40syl3anc 1367 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (ℝfld Σg (𝑓f · 𝑓)) = Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓f · 𝑓)‘𝑥))
42 suppssdm 7837 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 supp 0) ⊆ dom 𝑓
4342, 16fssdm 6524 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓 supp 0) ⊆ 𝐼)
4437, 43sstrd 3976 . . . . . . . . . . . . . . . . . . . 20 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → ((𝑓f · 𝑓) supp 0) ⊆ 𝐼)
4544sselda 3966 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → 𝑥𝐼)
4617, 17, 19, 19, 24, 25, 25ofval 7412 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → ((𝑓f · 𝑓)‘𝑥) = ((𝑓𝑥) · (𝑓𝑥)))
4745, 46syldan 593 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → ((𝑓f · 𝑓)‘𝑥) = ((𝑓𝑥) · (𝑓𝑥)))
4847sumeq2dv 15054 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓f · 𝑓)‘𝑥) = Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
4941, 48eqtrd 2856 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (ℝfld Σg (𝑓f · 𝑓)) = Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
5023, 49eqtrd 2856 . . . . . . . . . . . . . . 15 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
51503adant3 1128 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
52 simp3 1134 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0)
5351, 52eqtr3d 2858 . . . . . . . . . . . . 13 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0)
5432fsuppimpd 8834 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓 supp 0) ∈ Fin)
5554, 37ssfid 8735 . . . . . . . . . . . . . . 15 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → ((𝑓f · 𝑓) supp 0) ∈ Fin)
5645, 28syldan 593 . . . . . . . . . . . . . . 15 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → ((𝑓𝑥) · (𝑓𝑥)) ∈ ℝ)
5727msqge0d 11202 . . . . . . . . . . . . . . . 16 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → 0 ≤ ((𝑓𝑥) · (𝑓𝑥)))
5845, 57syldan 593 . . . . . . . . . . . . . . 15 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → 0 ≤ ((𝑓𝑥) · (𝑓𝑥)))
5955, 56, 58fsum00 15147 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0 ↔ ∀𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0))
60593adant3 1128 . . . . . . . . . . . . 13 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0 ↔ ∀𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0))
6153, 60mpbid 234 . . . . . . . . . . . 12 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → ∀𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0)
6261r19.21bi 3208 . . . . . . . . . . 11 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → ((𝑓𝑥) · (𝑓𝑥)) = 0)
6362adantlr 713 . . . . . . . . . 10 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → ((𝑓𝑥) · (𝑓𝑥)) = 0)
64273adantl3 1164 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
6564recnd 10663 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℂ)
6665, 65mul0ord 11284 . . . . . . . . . . 11 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (((𝑓𝑥) · (𝑓𝑥)) = 0 ↔ ((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0)))
6766adantr 483 . . . . . . . . . 10 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → (((𝑓𝑥) · (𝑓𝑥)) = 0 ↔ ((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0)))
6863, 67mpbid 234 . . . . . . . . 9 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → ((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0))
69 oridm 901 . . . . . . . . 9 (((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0) ↔ (𝑓𝑥) = 0)
7068, 69sylib 220 . . . . . . . 8 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ ((𝑓f · 𝑓) supp 0)) → (𝑓𝑥) = 0)
71293adant3 1128 . . . . . . . . . . 11 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (𝑓f · 𝑓):𝐼⟶ℝ)
7271adantr 483 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑓f · 𝑓):𝐼⟶ℝ)
73 ssidd 3989 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → ((𝑓f · 𝑓) supp 0) ⊆ ((𝑓f · 𝑓) supp 0))
74 simpl1 1187 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → 𝐼𝑉)
75 0red 10638 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → 0 ∈ ℝ)
7672, 73, 74, 75suppssr 7855 . . . . . . . . 9 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))) → ((𝑓f · 𝑓)‘𝑥) = 0)
77463adantl3 1164 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → ((𝑓f · 𝑓)‘𝑥) = ((𝑓𝑥) · (𝑓𝑥)))
7877eqeq1d 2823 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (((𝑓f · 𝑓)‘𝑥) = 0 ↔ ((𝑓𝑥) · (𝑓𝑥)) = 0))
7978, 66bitrd 281 . . . . . . . . . . 11 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (((𝑓f · 𝑓)‘𝑥) = 0 ↔ ((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0)))
8079, 69syl6bb 289 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (((𝑓f · 𝑓)‘𝑥) = 0 ↔ (𝑓𝑥) = 0))
8180biimpa 479 . . . . . . . . 9 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ ((𝑓f · 𝑓)‘𝑥) = 0) → (𝑓𝑥) = 0)
8276, 81syldan 593 . . . . . . . 8 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))) → (𝑓𝑥) = 0)
83 undif 4429 . . . . . . . . . . . . 13 (((𝑓f · 𝑓) supp 0) ⊆ 𝐼 ↔ (((𝑓f · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))) = 𝐼)
8444, 83sylib 220 . . . . . . . . . . . 12 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (((𝑓f · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))) = 𝐼)
8584eleq2d 2898 . . . . . . . . . . 11 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑥 ∈ (((𝑓f · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))) ↔ 𝑥𝐼))
86853adant3 1128 . . . . . . . . . 10 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (𝑥 ∈ (((𝑓f · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))) ↔ 𝑥𝐼))
8786biimpar 480 . . . . . . . . 9 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → 𝑥 ∈ (((𝑓f · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))))
88 elun 4124 . . . . . . . . 9 (𝑥 ∈ (((𝑓f · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))) ↔ (𝑥 ∈ ((𝑓f · 𝑓) supp 0) ∨ 𝑥 ∈ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))))
8987, 88sylib 220 . . . . . . . 8 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑥 ∈ ((𝑓f · 𝑓) supp 0) ∨ 𝑥 ∈ (𝐼 ∖ ((𝑓f · 𝑓) supp 0))))
9070, 82, 89mpjaodan 955 . . . . . . 7 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑓𝑥) = 0)
9190ralrimiva 3182 . . . . . 6 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → ∀𝑥𝐼 (𝑓𝑥) = 0)
92 fconstfv 6969 . . . . . . 7 (𝑓:𝐼⟶{0} ↔ (𝑓 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑓𝑥) = 0))
93 c0ex 10629 . . . . . . . 8 0 ∈ V
9493fconst2 6961 . . . . . . 7 (𝑓:𝐼⟶{0} ↔ 𝑓 = (𝐼 × {0}))
9592, 94sylbb1 239 . . . . . 6 ((𝑓 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑓𝑥) = 0) → 𝑓 = (𝐼 × {0}))
9618, 91, 95syl2anc 586 . . . . 5 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → 𝑓 = (𝐼 × {0}))
97 isfld 19505 . . . . . . . . . . 11 (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing))
9813, 97mpbi 232 . . . . . . . . . 10 (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing)
9998simpli 486 . . . . . . . . 9 fld ∈ DivRing
100 drngring 19503 . . . . . . . . 9 (ℝfld ∈ DivRing → ℝfld ∈ Ring)
10199, 100ax-mp 5 . . . . . . . 8 fld ∈ Ring
1026, 11frlm0 20892 . . . . . . . 8 ((ℝfld ∈ Ring ∧ 𝐼𝑉) → (𝐼 × {0}) = (0g‘(ℝfld freeLMod 𝐼)))
103101, 102mpan 688 . . . . . . 7 (𝐼𝑉 → (𝐼 × {0}) = (0g‘(ℝfld freeLMod 𝐼)))
10415, 103syl5reqr 2871 . . . . . 6 (𝐼𝑉 → (0g‘(ℝfld freeLMod 𝐼)) = (𝑥𝐼 ↦ 0))
1051043ad2ant1 1129 . . . . 5 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (0g‘(ℝfld freeLMod 𝐼)) = (𝑥𝐼 ↦ 0))
10615, 96, 1053eqtr4a 2882 . . . 4 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → 𝑓 = (0g‘(ℝfld freeLMod 𝐼)))
107 cjre 14492 . . . . 5 (𝑥 ∈ ℝ → (∗‘𝑥) = 𝑥)
108107adantl 484 . . . 4 ((𝐼𝑉𝑥 ∈ ℝ) → (∗‘𝑥) = 𝑥)
109 id 22 . . . 4 (𝐼𝑉𝐼𝑉)
1106, 7, 8, 4, 9, 10, 11, 12, 14, 106, 108, 109frlmphl 20919 . . 3 (𝐼𝑉 → (ℝfld freeLMod 𝐼) ∈ PreHil)
111 df-refld 20743 . . . 4 fld = (ℂflds ℝ)
1126frlmsca 20891 . . . . 5 ((ℝfld ∈ Field ∧ 𝐼𝑉) → ℝfld = (Scalar‘(ℝfld freeLMod 𝐼)))
11313, 112mpan 688 . . . 4 (𝐼𝑉 → ℝfld = (Scalar‘(ℝfld freeLMod 𝐼)))
114111, 113syl5reqr 2871 . . 3 (𝐼𝑉 → (Scalar‘(ℝfld freeLMod 𝐼)) = (ℂflds ℝ))
115 simpr1 1190 . . . 4 ((𝐼𝑉 ∧ (𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓)) → 𝑓 ∈ ℝ)
116 simpr3 1192 . . . 4 ((𝐼𝑉 ∧ (𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓)) → 0 ≤ 𝑓)
117115, 116resqrtcld 14771 . . 3 ((𝐼𝑉 ∧ (𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓)) → (√‘𝑓) ∈ ℝ)
11855, 56, 58fsumge0 15144 . . . . 5 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 0 ≤ Σ𝑥 ∈ ((𝑓f · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
119118, 49breqtrrd 5086 . . . 4 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 0 ≤ (ℝfld Σg (𝑓f · 𝑓)))
120119, 23breqtrrd 5086 . . 3 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 0 ≤ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))
1213, 4, 5, 110, 114, 9, 117, 120tcphcph 23834 . 2 (𝐼𝑉 → (toℂPreHil‘(ℝfld freeLMod 𝐼)) ∈ ℂPreHil)
1222, 121eqeltrd 2913 1 (𝐼𝑉𝐻 ∈ ℂPreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  cdif 3932  cun 3933  wss 3935  {csn 4560   class class class wbr 5058  cmpt 5138   × cxp 5547  Fun wfun 6343   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  f cof 7401   supp csupp 7824   finSupp cfsupp 8827  cr 10530  0cc0 10531   · cmul 10536  cle 10670  ccj 14449  Σcsu 15036  Basecbs 16477  s cress 16478  Scalarcsca 16562  ·𝑖cip 16564  0gc0g 16707   Σg cgsu 16708  Ringcrg 19291  CRingccrg 19292  DivRingcdr 19496  Fieldcfield 19497  fldccnfld 20539  fldcrefld 20742   freeLMod cfrlm 20884  ℂPreHilccph 23764  toℂPreHilctcph 23765  ℝ^crrx 23980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ico 12738  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-prds 16715  df-pws 16717  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-ghm 18350  df-cntz 18441  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-rnghom 19461  df-drng 19498  df-field 19499  df-subrg 19527  df-abv 19582  df-staf 19610  df-srng 19611  df-lmod 19630  df-lss 19698  df-lmhm 19788  df-lvec 19869  df-sra 19938  df-rgmod 19939  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-refld 20743  df-phl 20764  df-dsmm 20870  df-frlm 20885  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-xms 22924  df-ms 22925  df-nm 23186  df-ngp 23187  df-tng 23188  df-nrg 23189  df-nlm 23190  df-clm 23661  df-cph 23766  df-tcph 23767  df-rrx 23982
This theorem is referenced by:  rrxngp  42564
  Copyright terms: Public domain W3C validator