![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvbr0 | Structured version Visualization version GIF version |
Description: Two possibilities for the behavior of a function value. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fvbr0 | ⊢ (𝑋𝐹(𝐹‘𝑋) ∨ (𝐹‘𝑋) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . 4 ⊢ (𝐹‘𝑋) = (𝐹‘𝑋) | |
2 | tz6.12i 6935 | . . . 4 ⊢ ((𝐹‘𝑋) ≠ ∅ → ((𝐹‘𝑋) = (𝐹‘𝑋) → 𝑋𝐹(𝐹‘𝑋))) | |
3 | 1, 2 | mpi 20 | . . 3 ⊢ ((𝐹‘𝑋) ≠ ∅ → 𝑋𝐹(𝐹‘𝑋)) |
4 | 3 | necon1bi 2967 | . 2 ⊢ (¬ 𝑋𝐹(𝐹‘𝑋) → (𝐹‘𝑋) = ∅) |
5 | 4 | orri 862 | 1 ⊢ (𝑋𝐹(𝐹‘𝑋) ∨ (𝐹‘𝑋) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 847 = wceq 1537 ≠ wne 2938 ∅c0 4339 class class class wbr 5148 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 |
This theorem is referenced by: fvrn0 6937 eliman0 6947 |
Copyright terms: Public domain | W3C validator |