| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvbr0 | Structured version Visualization version GIF version | ||
| Description: Two possibilities for the behavior of a function value. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fvbr0 | ⊢ (𝑋𝐹(𝐹‘𝑋) ∨ (𝐹‘𝑋) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (𝐹‘𝑋) = (𝐹‘𝑋) | |
| 2 | tz6.12i 6843 | . . . 4 ⊢ ((𝐹‘𝑋) ≠ ∅ → ((𝐹‘𝑋) = (𝐹‘𝑋) → 𝑋𝐹(𝐹‘𝑋))) | |
| 3 | 1, 2 | mpi 20 | . . 3 ⊢ ((𝐹‘𝑋) ≠ ∅ → 𝑋𝐹(𝐹‘𝑋)) |
| 4 | 3 | necon1bi 2956 | . 2 ⊢ (¬ 𝑋𝐹(𝐹‘𝑋) → (𝐹‘𝑋) = ∅) |
| 5 | 4 | orri 862 | 1 ⊢ (𝑋𝐹(𝐹‘𝑋) ∨ (𝐹‘𝑋) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1541 ≠ wne 2928 ∅c0 4278 class class class wbr 5086 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-nul 5239 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 |
| This theorem is referenced by: fvrn0 6845 eliman0 6854 |
| Copyright terms: Public domain | W3C validator |