MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvbr0 Structured version   Visualization version   GIF version

Theorem fvbr0 6921
Description: Two possibilities for the behavior of a function value. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fvbr0 (𝑋𝐹(𝐹𝑋) ∨ (𝐹𝑋) = ∅)

Proof of Theorem fvbr0
StepHypRef Expression
1 eqid 2733 . . . 4 (𝐹𝑋) = (𝐹𝑋)
2 tz6.12i 6920 . . . 4 ((𝐹𝑋) ≠ ∅ → ((𝐹𝑋) = (𝐹𝑋) → 𝑋𝐹(𝐹𝑋)))
31, 2mpi 20 . . 3 ((𝐹𝑋) ≠ ∅ → 𝑋𝐹(𝐹𝑋))
43necon1bi 2970 . 2 𝑋𝐹(𝐹𝑋) → (𝐹𝑋) = ∅)
54orri 861 1 (𝑋𝐹(𝐹𝑋) ∨ (𝐹𝑋) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wo 846   = wceq 1542  wne 2941  c0 4323   class class class wbr 5149  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552
This theorem is referenced by:  fvrn0  6922  eliman0  6932
  Copyright terms: Public domain W3C validator