MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvbr0 Structured version   Visualization version   GIF version

Theorem fvbr0 6356
Description: Two possibilities for the behavior of a function value. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fvbr0 (𝑋𝐹(𝐹𝑋) ∨ (𝐹𝑋) = ∅)

Proof of Theorem fvbr0
StepHypRef Expression
1 eqid 2771 . . . 4 (𝐹𝑋) = (𝐹𝑋)
2 tz6.12i 6355 . . . 4 ((𝐹𝑋) ≠ ∅ → ((𝐹𝑋) = (𝐹𝑋) → 𝑋𝐹(𝐹𝑋)))
31, 2mpi 20 . . 3 ((𝐹𝑋) ≠ ∅ → 𝑋𝐹(𝐹𝑋))
43necon1bi 2971 . 2 𝑋𝐹(𝐹𝑋) → (𝐹𝑋) = ∅)
54orri 841 1 (𝑋𝐹(𝐹𝑋) ∨ (𝐹𝑋) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wo 826   = wceq 1631  wne 2943  c0 4063   class class class wbr 4786  cfv 6031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-nul 4923
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-iota 5994  df-fv 6039
This theorem is referenced by:  fvrn0  6357  eliman0  6364
  Copyright terms: Public domain W3C validator