| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvbr0 | Structured version Visualization version GIF version | ||
| Description: Two possibilities for the behavior of a function value. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fvbr0 | ⊢ (𝑋𝐹(𝐹‘𝑋) ∨ (𝐹‘𝑋) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (𝐹‘𝑋) = (𝐹‘𝑋) | |
| 2 | tz6.12i 6909 | . . . 4 ⊢ ((𝐹‘𝑋) ≠ ∅ → ((𝐹‘𝑋) = (𝐹‘𝑋) → 𝑋𝐹(𝐹‘𝑋))) | |
| 3 | 1, 2 | mpi 20 | . . 3 ⊢ ((𝐹‘𝑋) ≠ ∅ → 𝑋𝐹(𝐹‘𝑋)) |
| 4 | 3 | necon1bi 2961 | . 2 ⊢ (¬ 𝑋𝐹(𝐹‘𝑋) → (𝐹‘𝑋) = ∅) |
| 5 | 4 | orri 862 | 1 ⊢ (𝑋𝐹(𝐹‘𝑋) ∨ (𝐹‘𝑋) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 ≠ wne 2933 ∅c0 4313 class class class wbr 5124 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 |
| This theorem is referenced by: fvrn0 6911 eliman0 6921 |
| Copyright terms: Public domain | W3C validator |