MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvbr0 Structured version   Visualization version   GIF version

Theorem fvbr0 6910
Description: Two possibilities for the behavior of a function value. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fvbr0 (𝑋𝐹(𝐹𝑋) ∨ (𝐹𝑋) = ∅)

Proof of Theorem fvbr0
StepHypRef Expression
1 eqid 2736 . . . 4 (𝐹𝑋) = (𝐹𝑋)
2 tz6.12i 6909 . . . 4 ((𝐹𝑋) ≠ ∅ → ((𝐹𝑋) = (𝐹𝑋) → 𝑋𝐹(𝐹𝑋)))
31, 2mpi 20 . . 3 ((𝐹𝑋) ≠ ∅ → 𝑋𝐹(𝐹𝑋))
43necon1bi 2961 . 2 𝑋𝐹(𝐹𝑋) → (𝐹𝑋) = ∅)
54orri 862 1 (𝑋𝐹(𝐹𝑋) ∨ (𝐹𝑋) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1540  wne 2933  c0 4313   class class class wbr 5124  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544
This theorem is referenced by:  fvrn0  6911  eliman0  6921
  Copyright terms: Public domain W3C validator