MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvbr0 Structured version   Visualization version   GIF version

Theorem fvbr0 6934
Description: Two possibilities for the behavior of a function value. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fvbr0 (𝑋𝐹(𝐹𝑋) ∨ (𝐹𝑋) = ∅)

Proof of Theorem fvbr0
StepHypRef Expression
1 eqid 2736 . . . 4 (𝐹𝑋) = (𝐹𝑋)
2 tz6.12i 6933 . . . 4 ((𝐹𝑋) ≠ ∅ → ((𝐹𝑋) = (𝐹𝑋) → 𝑋𝐹(𝐹𝑋)))
31, 2mpi 20 . . 3 ((𝐹𝑋) ≠ ∅ → 𝑋𝐹(𝐹𝑋))
43necon1bi 2968 . 2 𝑋𝐹(𝐹𝑋) → (𝐹𝑋) = ∅)
54orri 862 1 (𝑋𝐹(𝐹𝑋) ∨ (𝐹𝑋) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1539  wne 2939  c0 4332   class class class wbr 5142  cfv 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-nul 5305
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-iota 6513  df-fv 6568
This theorem is referenced by:  fvrn0  6935  eliman0  6945
  Copyright terms: Public domain W3C validator