| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlknondisj | Structured version Visualization version GIF version | ||
| Description: The sets of closed walks on different vertices are disjunct. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 3-Mar-2022.) (Proof shortened by AV, 28-Mar-2022.) |
| Ref | Expression |
|---|---|
| clwwlknondisj | ⊢ Disj 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlknon 29992 | . . . . . 6 ⊢ (𝑥(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} | |
| 2 | clwwlknon 29992 | . . . . . 6 ⊢ (𝑦(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑦} | |
| 3 | 1, 2 | ineq12i 4177 | . . . . 5 ⊢ ((𝑥(ClWWalksNOn‘𝐺)𝑁) ∩ (𝑦(ClWWalksNOn‘𝐺)𝑁)) = ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ∩ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑦}) |
| 4 | inrab 4275 | . . . . . 6 ⊢ ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ∩ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑦}) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦)} | |
| 5 | eqtr2 2750 | . . . . . . . . 9 ⊢ (((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦) → 𝑥 = 𝑦) | |
| 6 | 5 | con3i 154 | . . . . . . . 8 ⊢ (¬ 𝑥 = 𝑦 → ¬ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦)) |
| 7 | 6 | ralrimivw 3129 | . . . . . . 7 ⊢ (¬ 𝑥 = 𝑦 → ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺) ¬ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦)) |
| 8 | rabeq0 4347 | . . . . . . 7 ⊢ ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦)} = ∅ ↔ ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺) ¬ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦)) | |
| 9 | 7, 8 | sylibr 234 | . . . . . 6 ⊢ (¬ 𝑥 = 𝑦 → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦)} = ∅) |
| 10 | 4, 9 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝑥 = 𝑦 → ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ∩ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑦}) = ∅) |
| 11 | 3, 10 | eqtrid 2776 | . . . 4 ⊢ (¬ 𝑥 = 𝑦 → ((𝑥(ClWWalksNOn‘𝐺)𝑁) ∩ (𝑦(ClWWalksNOn‘𝐺)𝑁)) = ∅) |
| 12 | 11 | orri 862 | . . 3 ⊢ (𝑥 = 𝑦 ∨ ((𝑥(ClWWalksNOn‘𝐺)𝑁) ∩ (𝑦(ClWWalksNOn‘𝐺)𝑁)) = ∅) |
| 13 | 12 | rgen2w 3049 | . 2 ⊢ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥 = 𝑦 ∨ ((𝑥(ClWWalksNOn‘𝐺)𝑁) ∩ (𝑦(ClWWalksNOn‘𝐺)𝑁)) = ∅) |
| 14 | oveq1 7376 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥(ClWWalksNOn‘𝐺)𝑁) = (𝑦(ClWWalksNOn‘𝐺)𝑁)) | |
| 15 | 14 | disjor 5084 | . 2 ⊢ (Disj 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁) ↔ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥 = 𝑦 ∨ ((𝑥(ClWWalksNOn‘𝐺)𝑁) ∩ (𝑦(ClWWalksNOn‘𝐺)𝑁)) = ∅)) |
| 16 | 13, 15 | mpbir 231 | 1 ⊢ Disj 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 = wceq 1540 ∀wral 3044 {crab 3402 ∩ cin 3910 ∅c0 4292 Disj wdisj 5069 ‘cfv 6499 (class class class)co 7369 0cc0 11044 ClWWalksN cclwwlkn 29926 ClWWalksNOncclwwlknon 29989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-disj 5070 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-hash 14272 df-word 14455 df-clwwlk 29884 df-clwwlkn 29927 df-clwwlknon 29990 |
| This theorem is referenced by: numclwwlk4 30288 |
| Copyright terms: Public domain | W3C validator |