![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknondisj | Structured version Visualization version GIF version |
Description: The sets of closed walks on different vertices are disjunct. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 3-Mar-2022.) (Proof shortened by AV, 28-Mar-2022.) |
Ref | Expression |
---|---|
clwwlknondisj | ⊢ Disj 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlknon 29310 | . . . . . 6 ⊢ (𝑥(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} | |
2 | clwwlknon 29310 | . . . . . 6 ⊢ (𝑦(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑦} | |
3 | 1, 2 | ineq12i 4208 | . . . . 5 ⊢ ((𝑥(ClWWalksNOn‘𝐺)𝑁) ∩ (𝑦(ClWWalksNOn‘𝐺)𝑁)) = ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ∩ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑦}) |
4 | inrab 4304 | . . . . . 6 ⊢ ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ∩ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑦}) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦)} | |
5 | eqtr2 2757 | . . . . . . . . 9 ⊢ (((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦) → 𝑥 = 𝑦) | |
6 | 5 | con3i 154 | . . . . . . . 8 ⊢ (¬ 𝑥 = 𝑦 → ¬ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦)) |
7 | 6 | ralrimivw 3151 | . . . . . . 7 ⊢ (¬ 𝑥 = 𝑦 → ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺) ¬ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦)) |
8 | rabeq0 4382 | . . . . . . 7 ⊢ ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦)} = ∅ ↔ ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺) ¬ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦)) | |
9 | 7, 8 | sylibr 233 | . . . . . 6 ⊢ (¬ 𝑥 = 𝑦 → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦)} = ∅) |
10 | 4, 9 | eqtrid 2785 | . . . . 5 ⊢ (¬ 𝑥 = 𝑦 → ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ∩ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑦}) = ∅) |
11 | 3, 10 | eqtrid 2785 | . . . 4 ⊢ (¬ 𝑥 = 𝑦 → ((𝑥(ClWWalksNOn‘𝐺)𝑁) ∩ (𝑦(ClWWalksNOn‘𝐺)𝑁)) = ∅) |
12 | 11 | orri 861 | . . 3 ⊢ (𝑥 = 𝑦 ∨ ((𝑥(ClWWalksNOn‘𝐺)𝑁) ∩ (𝑦(ClWWalksNOn‘𝐺)𝑁)) = ∅) |
13 | 12 | rgen2w 3067 | . 2 ⊢ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥 = 𝑦 ∨ ((𝑥(ClWWalksNOn‘𝐺)𝑁) ∩ (𝑦(ClWWalksNOn‘𝐺)𝑁)) = ∅) |
14 | oveq1 7403 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥(ClWWalksNOn‘𝐺)𝑁) = (𝑦(ClWWalksNOn‘𝐺)𝑁)) | |
15 | 14 | disjor 5124 | . 2 ⊢ (Disj 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁) ↔ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥 = 𝑦 ∨ ((𝑥(ClWWalksNOn‘𝐺)𝑁) ∩ (𝑦(ClWWalksNOn‘𝐺)𝑁)) = ∅)) |
16 | 13, 15 | mpbir 230 | 1 ⊢ Disj 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 ∨ wo 846 = wceq 1542 ∀wral 3062 {crab 3433 ∩ cin 3945 ∅c0 4320 Disj wdisj 5109 ‘cfv 6535 (class class class)co 7396 0cc0 11097 ClWWalksN cclwwlkn 29244 ClWWalksNOncclwwlknon 29307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-int 4947 df-iun 4995 df-disj 5110 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-1st 7962 df-2nd 7963 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-1o 8453 df-oadd 8457 df-er 8691 df-map 8810 df-en 8928 df-dom 8929 df-sdom 8930 df-fin 8931 df-card 9921 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-nn 12200 df-n0 12460 df-xnn0 12532 df-z 12546 df-uz 12810 df-fz 13472 df-fzo 13615 df-hash 14278 df-word 14452 df-clwwlk 29202 df-clwwlkn 29245 df-clwwlknon 29308 |
This theorem is referenced by: numclwwlk4 29606 |
Copyright terms: Public domain | W3C validator |