![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknondisj | Structured version Visualization version GIF version |
Description: The sets of closed walks on different vertices are disjunct. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 3-Mar-2022.) (Proof shortened by AV, 28-Mar-2022.) |
Ref | Expression |
---|---|
clwwlknondisj | β’ Disj π₯ β π (π₯(ClWWalksNOnβπΊ)π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlknon 29607 | . . . . . 6 β’ (π₯(ClWWalksNOnβπΊ)π) = {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π₯} | |
2 | clwwlknon 29607 | . . . . . 6 β’ (π¦(ClWWalksNOnβπΊ)π) = {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π¦} | |
3 | 1, 2 | ineq12i 4211 | . . . . 5 β’ ((π₯(ClWWalksNOnβπΊ)π) β© (π¦(ClWWalksNOnβπΊ)π)) = ({π€ β (π ClWWalksN πΊ) β£ (π€β0) = π₯} β© {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π¦}) |
4 | inrab 4307 | . . . . . 6 β’ ({π€ β (π ClWWalksN πΊ) β£ (π€β0) = π₯} β© {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π¦}) = {π€ β (π ClWWalksN πΊ) β£ ((π€β0) = π₯ β§ (π€β0) = π¦)} | |
5 | eqtr2 2755 | . . . . . . . . 9 β’ (((π€β0) = π₯ β§ (π€β0) = π¦) β π₯ = π¦) | |
6 | 5 | con3i 154 | . . . . . . . 8 β’ (Β¬ π₯ = π¦ β Β¬ ((π€β0) = π₯ β§ (π€β0) = π¦)) |
7 | 6 | ralrimivw 3149 | . . . . . . 7 β’ (Β¬ π₯ = π¦ β βπ€ β (π ClWWalksN πΊ) Β¬ ((π€β0) = π₯ β§ (π€β0) = π¦)) |
8 | rabeq0 4385 | . . . . . . 7 β’ ({π€ β (π ClWWalksN πΊ) β£ ((π€β0) = π₯ β§ (π€β0) = π¦)} = β β βπ€ β (π ClWWalksN πΊ) Β¬ ((π€β0) = π₯ β§ (π€β0) = π¦)) | |
9 | 7, 8 | sylibr 233 | . . . . . 6 β’ (Β¬ π₯ = π¦ β {π€ β (π ClWWalksN πΊ) β£ ((π€β0) = π₯ β§ (π€β0) = π¦)} = β ) |
10 | 4, 9 | eqtrid 2783 | . . . . 5 β’ (Β¬ π₯ = π¦ β ({π€ β (π ClWWalksN πΊ) β£ (π€β0) = π₯} β© {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π¦}) = β ) |
11 | 3, 10 | eqtrid 2783 | . . . 4 β’ (Β¬ π₯ = π¦ β ((π₯(ClWWalksNOnβπΊ)π) β© (π¦(ClWWalksNOnβπΊ)π)) = β ) |
12 | 11 | orri 859 | . . 3 β’ (π₯ = π¦ β¨ ((π₯(ClWWalksNOnβπΊ)π) β© (π¦(ClWWalksNOnβπΊ)π)) = β ) |
13 | 12 | rgen2w 3065 | . 2 β’ βπ₯ β π βπ¦ β π (π₯ = π¦ β¨ ((π₯(ClWWalksNOnβπΊ)π) β© (π¦(ClWWalksNOnβπΊ)π)) = β ) |
14 | oveq1 7419 | . . 3 β’ (π₯ = π¦ β (π₯(ClWWalksNOnβπΊ)π) = (π¦(ClWWalksNOnβπΊ)π)) | |
15 | 14 | disjor 5129 | . 2 β’ (Disj π₯ β π (π₯(ClWWalksNOnβπΊ)π) β βπ₯ β π βπ¦ β π (π₯ = π¦ β¨ ((π₯(ClWWalksNOnβπΊ)π) β© (π¦(ClWWalksNOnβπΊ)π)) = β )) |
16 | 13, 15 | mpbir 230 | 1 β’ Disj π₯ β π (π₯(ClWWalksNOnβπΊ)π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β§ wa 395 β¨ wo 844 = wceq 1540 βwral 3060 {crab 3431 β© cin 3948 β c0 4323 Disj wdisj 5114 βcfv 6544 (class class class)co 7412 0cc0 11113 ClWWalksN cclwwlkn 29541 ClWWalksNOncclwwlknon 29604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-disj 5115 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-oadd 8473 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 df-hash 14296 df-word 14470 df-clwwlk 29499 df-clwwlkn 29542 df-clwwlknon 29605 |
This theorem is referenced by: numclwwlk4 29903 |
Copyright terms: Public domain | W3C validator |