Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ot2elxp Structured version   Visualization version   GIF version

Theorem ot2elxp 33582
Description: Ordered triple membership in a triple cross product. (Contributed by Scott Fenton, 21-Aug-2024.)
Assertion
Ref Expression
ot2elxp (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝐷 × 𝐸) × 𝐹) ↔ (𝐴𝐷𝐵𝐸𝐶𝐹))

Proof of Theorem ot2elxp
StepHypRef Expression
1 opelxp 5616 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝐷 × 𝐸) ↔ (𝐴𝐷𝐵𝐸))
21anbi1i 623 . 2 ((⟨𝐴, 𝐵⟩ ∈ (𝐷 × 𝐸) ∧ 𝐶𝐹) ↔ ((𝐴𝐷𝐵𝐸) ∧ 𝐶𝐹))
3 opelxp 5616 . 2 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝐷 × 𝐸) × 𝐹) ↔ (⟨𝐴, 𝐵⟩ ∈ (𝐷 × 𝐸) ∧ 𝐶𝐹))
4 df-3an 1087 . 2 ((𝐴𝐷𝐵𝐸𝐶𝐹) ↔ ((𝐴𝐷𝐵𝐸) ∧ 𝐶𝐹))
52, 3, 43bitr4i 302 1 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝐷 × 𝐸) × 𝐹) ↔ (𝐴𝐷𝐵𝐸𝐶𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085  wcel 2108  cop 4564   × cxp 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-xp 5586
This theorem is referenced by:  frpoins3xp3g  33715  xpord3lem  33722  xpord3ind  33727
  Copyright terms: Public domain W3C validator