Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpord3ind Structured version   Visualization version   GIF version

Theorem xpord3ind 33367
Description: Induction over the triple cross product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 4-Sep-2024.)
Hypotheses
Ref Expression
xpord3.1 𝑈 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}
xpord3ind.1 𝑅 Fr 𝐴
xpord3ind.2 𝑅 Po 𝐴
xpord3ind.3 𝑅 Se 𝐴
xpord3ind.4 𝑆 Fr 𝐵
xpord3ind.5 𝑆 Po 𝐵
xpord3ind.6 𝑆 Se 𝐵
xpord3ind.7 𝑇 Fr 𝐶
xpord3ind.8 𝑇 Po 𝐶
xpord3ind.9 𝑇 Se 𝐶
xpord3ind.10 (𝑎 = 𝑑 → (𝜑𝜓))
xpord3ind.11 (𝑏 = 𝑒 → (𝜓𝜒))
xpord3ind.12 (𝑐 = 𝑓 → (𝜒𝜃))
xpord3ind.13 (𝑎 = 𝑑 → (𝜏𝜃))
xpord3ind.14 (𝑏 = 𝑒 → (𝜂𝜏))
xpord3ind.15 (𝑏 = 𝑒 → (𝜁𝜃))
xpord3ind.16 (𝑐 = 𝑓 → (𝜎𝜏))
xpord3ind.17 (𝑎 = 𝑋 → (𝜑𝜌))
xpord3ind.18 (𝑏 = 𝑌 → (𝜌𝜇))
xpord3ind.19 (𝑐 = 𝑍 → (𝜇𝜆))
xpord3ind.i ((𝑎𝐴𝑏𝐵𝑐𝐶) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑))
Assertion
Ref Expression
xpord3ind ((𝑋𝐴𝑌𝐵𝑍𝐶) → 𝜆)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝜓,𝑎   𝜌,𝑎   𝜃,𝑎   𝑥,𝐴,𝑦   𝐵,𝑎,𝑏,𝑐   𝜒,𝑏   𝑏,𝑑,𝐵,𝑒,𝑓   𝜇,𝑏   𝜃,𝑏   𝑥,𝐵,𝑦   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝜆,𝑐   𝜃,𝑐   𝑥,𝐶,𝑦   𝜒,𝑓   𝑒,𝑑,𝑓   𝜑,𝑑   𝜏,𝑑   𝜂,𝑒   𝑒,𝑓   𝜓,𝑒   𝜁,𝑒   𝜎,𝑓   𝑅,𝑑,𝑒,𝑓   𝑥,𝑅,𝑦   𝑆,𝑑,𝑒,𝑓   𝑥,𝑆,𝑦   𝑇,𝑑,𝑒,𝑓   𝑥,𝑇,𝑦   𝑈,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑋,𝑎,𝑏,𝑐   𝑥,𝑦   𝑌,𝑏,𝑐   𝑍,𝑐
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑒,𝑓,𝑎,𝑏,𝑐)   𝜓(𝑥,𝑦,𝑓,𝑏,𝑐,𝑑)   𝜒(𝑥,𝑦,𝑒,𝑎,𝑐,𝑑)   𝜃(𝑥,𝑦,𝑒,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑒,𝑓,𝑎,𝑏,𝑐)   𝜂(𝑥,𝑦,𝑓,𝑎,𝑏,𝑐,𝑑)   𝜁(𝑥,𝑦,𝑓,𝑎,𝑏,𝑐,𝑑)   𝜎(𝑥,𝑦,𝑒,𝑎,𝑏,𝑐,𝑑)   𝜌(𝑥,𝑦,𝑒,𝑓,𝑏,𝑐,𝑑)   𝜇(𝑥,𝑦,𝑒,𝑓,𝑎,𝑐,𝑑)   𝜆(𝑥,𝑦,𝑒,𝑓,𝑎,𝑏,𝑑)   𝑅(𝑎,𝑏,𝑐)   𝑆(𝑎,𝑏,𝑐)   𝑇(𝑎,𝑏,𝑐)   𝑈(𝑥,𝑦)   𝑋(𝑥,𝑦,𝑒,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑒,𝑓,𝑎,𝑑)   𝑍(𝑥,𝑦,𝑒,𝑓,𝑎,𝑏,𝑑)

Proof of Theorem xpord3ind
StepHypRef Expression
1 xpord3.1 . . . . 5 𝑈 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}
2 xpord3ind.1 . . . . . 6 𝑅 Fr 𝐴
32a1i 11 . . . . 5 (⊤ → 𝑅 Fr 𝐴)
4 xpord3ind.4 . . . . . 6 𝑆 Fr 𝐵
54a1i 11 . . . . 5 (⊤ → 𝑆 Fr 𝐵)
6 xpord3ind.7 . . . . . 6 𝑇 Fr 𝐶
76a1i 11 . . . . 5 (⊤ → 𝑇 Fr 𝐶)
81, 3, 5, 7frxp3 33364 . . . 4 (⊤ → 𝑈 Fr ((𝐴 × 𝐵) × 𝐶))
98mptru 1545 . . 3 𝑈 Fr ((𝐴 × 𝐵) × 𝐶)
10 xpord3ind.2 . . . . . 6 𝑅 Po 𝐴
1110a1i 11 . . . . 5 (⊤ → 𝑅 Po 𝐴)
12 xpord3ind.5 . . . . . 6 𝑆 Po 𝐵
1312a1i 11 . . . . 5 (⊤ → 𝑆 Po 𝐵)
14 xpord3ind.8 . . . . . 6 𝑇 Po 𝐶
1514a1i 11 . . . . 5 (⊤ → 𝑇 Po 𝐶)
161, 11, 13, 15poxp3 33363 . . . 4 (⊤ → 𝑈 Po ((𝐴 × 𝐵) × 𝐶))
1716mptru 1545 . . 3 𝑈 Po ((𝐴 × 𝐵) × 𝐶)
18 xpord3ind.3 . . . . . 6 𝑅 Se 𝐴
1918a1i 11 . . . . 5 (⊤ → 𝑅 Se 𝐴)
20 xpord3ind.6 . . . . . 6 𝑆 Se 𝐵
2120a1i 11 . . . . 5 (⊤ → 𝑆 Se 𝐵)
22 xpord3ind.9 . . . . . 6 𝑇 Se 𝐶
2322a1i 11 . . . . 5 (⊤ → 𝑇 Se 𝐶)
241, 19, 21, 23sexp3 33366 . . . 4 (⊤ → 𝑈 Se ((𝐴 × 𝐵) × 𝐶))
2524mptru 1545 . . 3 𝑈 Se ((𝐴 × 𝐵) × 𝐶)
269, 17, 253pm3.2i 1336 . 2 (𝑈 Fr ((𝐴 × 𝐵) × 𝐶) ∧ 𝑈 Po ((𝐴 × 𝐵) × 𝐶) ∧ 𝑈 Se ((𝐴 × 𝐵) × 𝐶))
271xpord3pred 33365 . . . . . . . . . 10 ((𝑎𝐴𝑏𝐵𝑐𝐶) → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), ⟨⟨𝑎, 𝑏⟩, 𝑐⟩) = ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {⟨⟨𝑎, 𝑏⟩, 𝑐⟩}))
2827eleq2d 2837 . . . . . . . . 9 ((𝑎𝐴𝑏𝐵𝑐𝐶) → (⟨⟨𝑑, 𝑒⟩, 𝑓⟩ ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), ⟨⟨𝑎, 𝑏⟩, 𝑐⟩) ↔ ⟨⟨𝑑, 𝑒⟩, 𝑓⟩ ∈ ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {⟨⟨𝑎, 𝑏⟩, 𝑐⟩})))
2928imbi1d 345 . . . . . . . 8 ((𝑎𝐴𝑏𝐵𝑐𝐶) → ((⟨⟨𝑑, 𝑒⟩, 𝑓⟩ ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), ⟨⟨𝑎, 𝑏⟩, 𝑐⟩) → 𝜃) ↔ (⟨⟨𝑑, 𝑒⟩, 𝑓⟩ ∈ ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {⟨⟨𝑎, 𝑏⟩, 𝑐⟩}) → 𝜃)))
30 eldifsn 4680 . . . . . . . . . . 11 (⟨⟨𝑑, 𝑒⟩, 𝑓⟩ ∈ ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {⟨⟨𝑎, 𝑏⟩, 𝑐⟩}) ↔ (⟨⟨𝑑, 𝑒⟩, 𝑓⟩ ∈ (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∧ ⟨⟨𝑑, 𝑒⟩, 𝑓⟩ ≠ ⟨⟨𝑎, 𝑏⟩, 𝑐⟩))
31 ot2elxp 33210 . . . . . . . . . . . 12 (⟨⟨𝑑, 𝑒⟩, 𝑓⟩ ∈ (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ↔ (𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})))
32 vex 3413 . . . . . . . . . . . . 13 𝑑 ∈ V
33 vex 3413 . . . . . . . . . . . . 13 𝑒 ∈ V
34 vex 3413 . . . . . . . . . . . . 13 𝑓 ∈ V
3532, 33, 34otthne 33213 . . . . . . . . . . . 12 (⟨⟨𝑑, 𝑒⟩, 𝑓⟩ ≠ ⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ↔ (𝑑𝑎𝑒𝑏𝑓𝑐))
3631, 35anbi12i 629 . . . . . . . . . . 11 ((⟨⟨𝑑, 𝑒⟩, 𝑓⟩ ∈ (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∧ ⟨⟨𝑑, 𝑒⟩, 𝑓⟩ ≠ ⟨⟨𝑎, 𝑏⟩, 𝑐⟩) ↔ ((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∧ (𝑑𝑎𝑒𝑏𝑓𝑐)))
3730, 36bitri 278 . . . . . . . . . 10 (⟨⟨𝑑, 𝑒⟩, 𝑓⟩ ∈ ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {⟨⟨𝑎, 𝑏⟩, 𝑐⟩}) ↔ ((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∧ (𝑑𝑎𝑒𝑏𝑓𝑐)))
3837imbi1i 353 . . . . . . . . 9 ((⟨⟨𝑑, 𝑒⟩, 𝑓⟩ ∈ ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {⟨⟨𝑎, 𝑏⟩, 𝑐⟩}) → 𝜃) ↔ (((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∧ (𝑑𝑎𝑒𝑏𝑓𝑐)) → 𝜃))
39 impexp 454 . . . . . . . . 9 ((((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∧ (𝑑𝑎𝑒𝑏𝑓𝑐)) → 𝜃) ↔ ((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) → ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃)))
4038, 39bitr2i 279 . . . . . . . 8 (((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) → ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃)) ↔ (⟨⟨𝑑, 𝑒⟩, 𝑓⟩ ∈ ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {⟨⟨𝑎, 𝑏⟩, 𝑐⟩}) → 𝜃))
4129, 40bitr4di 292 . . . . . . 7 ((𝑎𝐴𝑏𝐵𝑐𝐶) → ((⟨⟨𝑑, 𝑒⟩, 𝑓⟩ ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), ⟨⟨𝑎, 𝑏⟩, 𝑐⟩) → 𝜃) ↔ ((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) → ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))))
4241albidv 1921 . . . . . 6 ((𝑎𝐴𝑏𝐵𝑐𝐶) → (∀𝑓(⟨⟨𝑑, 𝑒⟩, 𝑓⟩ ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), ⟨⟨𝑎, 𝑏⟩, 𝑐⟩) → 𝜃) ↔ ∀𝑓((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) → ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))))
43422albidv 1924 . . . . 5 ((𝑎𝐴𝑏𝐵𝑐𝐶) → (∀𝑑𝑒𝑓(⟨⟨𝑑, 𝑒⟩, 𝑓⟩ ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), ⟨⟨𝑎, 𝑏⟩, 𝑐⟩) → 𝜃) ↔ ∀𝑑𝑒𝑓((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) → ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))))
44 r3al 3131 . . . . 5 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) ↔ ∀𝑑𝑒𝑓((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) → ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃)))
4543, 44bitr4di 292 . . . 4 ((𝑎𝐴𝑏𝐵𝑐𝐶) → (∀𝑑𝑒𝑓(⟨⟨𝑑, 𝑒⟩, 𝑓⟩ ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), ⟨⟨𝑎, 𝑏⟩, 𝑐⟩) → 𝜃) ↔ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃)))
46 ssun1 4079 . . . . . . . . 9 Pred(𝑅, 𝐴, 𝑎) ⊆ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})
47 ssralv 3960 . . . . . . . . 9 (Pred(𝑅, 𝐴, 𝑎) ⊆ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) → (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃)))
4846, 47ax-mp 5 . . . . . . . 8 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
49 ssun1 4079 . . . . . . . . . . 11 Pred(𝑆, 𝐵, 𝑏) ⊆ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})
50 ssralv 3960 . . . . . . . . . . 11 (Pred(𝑆, 𝐵, 𝑏) ⊆ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) → (∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃)))
5149, 50ax-mp 5 . . . . . . . . . 10 (∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
52 ssun1 4079 . . . . . . . . . . . 12 Pred(𝑇, 𝐶, 𝑐) ⊆ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})
53 ssralv 3960 . . . . . . . . . . . 12 (Pred(𝑇, 𝐶, 𝑐) ⊆ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐}) → (∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃)))
5452, 53ax-mp 5 . . . . . . . . . . 11 (∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
5554ralimi 3092 . . . . . . . . . 10 (∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
5651, 55syl 17 . . . . . . . . 9 (∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
5756ralimi 3092 . . . . . . . 8 (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
58 predpoirr 6159 . . . . . . . . . . . . . . 15 (𝑇 Po 𝐶 → ¬ 𝑐 ∈ Pred(𝑇, 𝐶, 𝑐))
5914, 58ax-mp 5 . . . . . . . . . . . . . 14 ¬ 𝑐 ∈ Pred(𝑇, 𝐶, 𝑐)
60 eleq1w 2834 . . . . . . . . . . . . . 14 (𝑓 = 𝑐 → (𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) ↔ 𝑐 ∈ Pred(𝑇, 𝐶, 𝑐)))
6159, 60mtbiri 330 . . . . . . . . . . . . 13 (𝑓 = 𝑐 → ¬ 𝑓 ∈ Pred(𝑇, 𝐶, 𝑐))
6261necon2ai 2980 . . . . . . . . . . . 12 (𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) → 𝑓𝑐)
63623mix3d 1335 . . . . . . . . . . 11 (𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) → (𝑑𝑎𝑒𝑏𝑓𝑐))
64 pm2.27 42 . . . . . . . . . . 11 ((𝑑𝑎𝑒𝑏𝑓𝑐) → (((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → 𝜃))
6563, 64syl 17 . . . . . . . . . 10 (𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) → (((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → 𝜃))
6665ralimia 3090 . . . . . . . . 9 (∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃)
67662ralimi 3093 . . . . . . . 8 (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃)
6848, 57, 673syl 18 . . . . . . 7 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃)
69 ssun2 4080 . . . . . . . . . . . . . 14 {𝑐} ⊆ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})
70 ssralv 3960 . . . . . . . . . . . . . 14 ({𝑐} ⊆ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐}) → (∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑓 ∈ {𝑐} ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃)))
7169, 70ax-mp 5 . . . . . . . . . . . . 13 (∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑓 ∈ {𝑐} ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
7271ralimi 3092 . . . . . . . . . . . 12 (∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
7351, 72syl 17 . . . . . . . . . . 11 (∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
7473ralimi 3092 . . . . . . . . . 10 (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
7548, 74syl 17 . . . . . . . . 9 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
76 vex 3413 . . . . . . . . . . 11 𝑐 ∈ V
77 biidd 265 . . . . . . . . . . . . 13 (𝑓 = 𝑐 → (𝑑𝑎𝑑𝑎))
78 biidd 265 . . . . . . . . . . . . 13 (𝑓 = 𝑐 → (𝑒𝑏𝑒𝑏))
79 neeq1 3013 . . . . . . . . . . . . 13 (𝑓 = 𝑐 → (𝑓𝑐𝑐𝑐))
8077, 78, 793orbi123d 1432 . . . . . . . . . . . 12 (𝑓 = 𝑐 → ((𝑑𝑎𝑒𝑏𝑓𝑐) ↔ (𝑑𝑎𝑒𝑏𝑐𝑐)))
81 xpord3ind.12 . . . . . . . . . . . . . 14 (𝑐 = 𝑓 → (𝜒𝜃))
8281bicomd 226 . . . . . . . . . . . . 13 (𝑐 = 𝑓 → (𝜃𝜒))
8382equcoms 2027 . . . . . . . . . . . 12 (𝑓 = 𝑐 → (𝜃𝜒))
8480, 83imbi12d 348 . . . . . . . . . . 11 (𝑓 = 𝑐 → (((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) ↔ ((𝑑𝑎𝑒𝑏𝑐𝑐) → 𝜒)))
8576, 84ralsn 4579 . . . . . . . . . 10 (∀𝑓 ∈ {𝑐} ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) ↔ ((𝑑𝑎𝑒𝑏𝑐𝑐) → 𝜒))
86852ralbii 3098 . . . . . . . . 9 (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) ↔ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑑𝑎𝑒𝑏𝑐𝑐) → 𝜒))
8775, 86sylib 221 . . . . . . . 8 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑑𝑎𝑒𝑏𝑐𝑐) → 𝜒))
88 predpoirr 6159 . . . . . . . . . . . . . . 15 (𝑆 Po 𝐵 → ¬ 𝑏 ∈ Pred(𝑆, 𝐵, 𝑏))
8912, 88ax-mp 5 . . . . . . . . . . . . . 14 ¬ 𝑏 ∈ Pred(𝑆, 𝐵, 𝑏)
90 eleq1w 2834 . . . . . . . . . . . . . 14 (𝑒 = 𝑏 → (𝑒 ∈ Pred(𝑆, 𝐵, 𝑏) ↔ 𝑏 ∈ Pred(𝑆, 𝐵, 𝑏)))
9189, 90mtbiri 330 . . . . . . . . . . . . 13 (𝑒 = 𝑏 → ¬ 𝑒 ∈ Pred(𝑆, 𝐵, 𝑏))
9291necon2ai 2980 . . . . . . . . . . . 12 (𝑒 ∈ Pred(𝑆, 𝐵, 𝑏) → 𝑒𝑏)
93923mix2d 1334 . . . . . . . . . . 11 (𝑒 ∈ Pred(𝑆, 𝐵, 𝑏) → (𝑑𝑎𝑒𝑏𝑐𝑐))
94 pm2.27 42 . . . . . . . . . . 11 ((𝑑𝑎𝑒𝑏𝑐𝑐) → (((𝑑𝑎𝑒𝑏𝑐𝑐) → 𝜒) → 𝜒))
9593, 94syl 17 . . . . . . . . . 10 (𝑒 ∈ Pred(𝑆, 𝐵, 𝑏) → (((𝑑𝑎𝑒𝑏𝑐𝑐) → 𝜒) → 𝜒))
9695ralimia 3090 . . . . . . . . 9 (∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑑𝑎𝑒𝑏𝑐𝑐) → 𝜒) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒)
9796ralimi 3092 . . . . . . . 8 (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑑𝑎𝑒𝑏𝑐𝑐) → 𝜒) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒)
9887, 97syl 17 . . . . . . 7 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒)
99 ssun2 4080 . . . . . . . . . . . . 13 {𝑏} ⊆ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})
100 ssralv 3960 . . . . . . . . . . . . 13 ({𝑏} ⊆ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) → (∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑒 ∈ {𝑏}∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃)))
10199, 100ax-mp 5 . . . . . . . . . . . 12 (∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑒 ∈ {𝑏}∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
10254ralimi 3092 . . . . . . . . . . . 12 (∀𝑒 ∈ {𝑏}∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
103101, 102syl 17 . . . . . . . . . . 11 (∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
104103ralimi 3092 . . . . . . . . . 10 (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
10548, 104syl 17 . . . . . . . . 9 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
106 vex 3413 . . . . . . . . . . 11 𝑏 ∈ V
107 biidd 265 . . . . . . . . . . . . . 14 (𝑒 = 𝑏 → (𝑑𝑎𝑑𝑎))
108 neeq1 3013 . . . . . . . . . . . . . 14 (𝑒 = 𝑏 → (𝑒𝑏𝑏𝑏))
109 biidd 265 . . . . . . . . . . . . . 14 (𝑒 = 𝑏 → (𝑓𝑐𝑓𝑐))
110107, 108, 1093orbi123d 1432 . . . . . . . . . . . . 13 (𝑒 = 𝑏 → ((𝑑𝑎𝑒𝑏𝑓𝑐) ↔ (𝑑𝑎𝑏𝑏𝑓𝑐)))
111 xpord3ind.15 . . . . . . . . . . . . . 14 (𝑏 = 𝑒 → (𝜁𝜃))
112 equcom 2025 . . . . . . . . . . . . . 14 (𝑏 = 𝑒𝑒 = 𝑏)
113 bicom 225 . . . . . . . . . . . . . 14 ((𝜁𝜃) ↔ (𝜃𝜁))
114111, 112, 1133imtr3i 294 . . . . . . . . . . . . 13 (𝑒 = 𝑏 → (𝜃𝜁))
115110, 114imbi12d 348 . . . . . . . . . . . 12 (𝑒 = 𝑏 → (((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) ↔ ((𝑑𝑎𝑏𝑏𝑓𝑐) → 𝜁)))
116115ralbidv 3126 . . . . . . . . . . 11 (𝑒 = 𝑏 → (∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) ↔ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑏𝑏𝑓𝑐) → 𝜁)))
117106, 116ralsn 4579 . . . . . . . . . 10 (∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) ↔ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑏𝑏𝑓𝑐) → 𝜁))
118117ralbii 3097 . . . . . . . . 9 (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) ↔ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑏𝑏𝑓𝑐) → 𝜁))
119105, 118sylib 221 . . . . . . . 8 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑏𝑏𝑓𝑐) → 𝜁))
120623mix3d 1335 . . . . . . . . . . 11 (𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) → (𝑑𝑎𝑏𝑏𝑓𝑐))
121 pm2.27 42 . . . . . . . . . . 11 ((𝑑𝑎𝑏𝑏𝑓𝑐) → (((𝑑𝑎𝑏𝑏𝑓𝑐) → 𝜁) → 𝜁))
122120, 121syl 17 . . . . . . . . . 10 (𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) → (((𝑑𝑎𝑏𝑏𝑓𝑐) → 𝜁) → 𝜁))
123122ralimia 3090 . . . . . . . . 9 (∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑏𝑏𝑓𝑐) → 𝜁) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁)
124123ralimi 3092 . . . . . . . 8 (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑏𝑏𝑓𝑐) → 𝜁) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁)
125119, 124syl 17 . . . . . . 7 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁)
12668, 98, 1253jca 1125 . . . . . 6 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁))
12771ralimi 3092 . . . . . . . . . . . 12 (∀𝑒 ∈ {𝑏}∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑒 ∈ {𝑏}∀𝑓 ∈ {𝑐} ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
128101, 127syl 17 . . . . . . . . . . 11 (∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑒 ∈ {𝑏}∀𝑓 ∈ {𝑐} ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
129128ralimi 3092 . . . . . . . . . 10 (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ {𝑏}∀𝑓 ∈ {𝑐} ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
13048, 129syl 17 . . . . . . . . 9 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ {𝑏}∀𝑓 ∈ {𝑐} ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
13185ralbii 3097 . . . . . . . . . . 11 (∀𝑒 ∈ {𝑏}∀𝑓 ∈ {𝑐} ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) ↔ ∀𝑒 ∈ {𝑏} ((𝑑𝑎𝑒𝑏𝑐𝑐) → 𝜒))
132 biidd 265 . . . . . . . . . . . . . 14 (𝑒 = 𝑏 → (𝑐𝑐𝑐𝑐))
133107, 108, 1323orbi123d 1432 . . . . . . . . . . . . 13 (𝑒 = 𝑏 → ((𝑑𝑎𝑒𝑏𝑐𝑐) ↔ (𝑑𝑎𝑏𝑏𝑐𝑐)))
134 xpord3ind.11 . . . . . . . . . . . . . . 15 (𝑏 = 𝑒 → (𝜓𝜒))
135134bicomd 226 . . . . . . . . . . . . . 14 (𝑏 = 𝑒 → (𝜒𝜓))
136135equcoms 2027 . . . . . . . . . . . . 13 (𝑒 = 𝑏 → (𝜒𝜓))
137133, 136imbi12d 348 . . . . . . . . . . . 12 (𝑒 = 𝑏 → (((𝑑𝑎𝑒𝑏𝑐𝑐) → 𝜒) ↔ ((𝑑𝑎𝑏𝑏𝑐𝑐) → 𝜓)))
138106, 137ralsn 4579 . . . . . . . . . . 11 (∀𝑒 ∈ {𝑏} ((𝑑𝑎𝑒𝑏𝑐𝑐) → 𝜒) ↔ ((𝑑𝑎𝑏𝑏𝑐𝑐) → 𝜓))
139131, 138bitri 278 . . . . . . . . . 10 (∀𝑒 ∈ {𝑏}∀𝑓 ∈ {𝑐} ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) ↔ ((𝑑𝑎𝑏𝑏𝑐𝑐) → 𝜓))
140139ralbii 3097 . . . . . . . . 9 (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ {𝑏}∀𝑓 ∈ {𝑐} ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) ↔ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)((𝑑𝑎𝑏𝑏𝑐𝑐) → 𝜓))
141130, 140sylib 221 . . . . . . . 8 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)((𝑑𝑎𝑏𝑏𝑐𝑐) → 𝜓))
142 predpoirr 6159 . . . . . . . . . . . . . 14 (𝑅 Po 𝐴 → ¬ 𝑎 ∈ Pred(𝑅, 𝐴, 𝑎))
14310, 142ax-mp 5 . . . . . . . . . . . . 13 ¬ 𝑎 ∈ Pred(𝑅, 𝐴, 𝑎)
144 eleq1w 2834 . . . . . . . . . . . . 13 (𝑑 = 𝑎 → (𝑑 ∈ Pred(𝑅, 𝐴, 𝑎) ↔ 𝑎 ∈ Pred(𝑅, 𝐴, 𝑎)))
145143, 144mtbiri 330 . . . . . . . . . . . 12 (𝑑 = 𝑎 → ¬ 𝑑 ∈ Pred(𝑅, 𝐴, 𝑎))
146145necon2ai 2980 . . . . . . . . . . 11 (𝑑 ∈ Pred(𝑅, 𝐴, 𝑎) → 𝑑𝑎)
1471463mix1d 1333 . . . . . . . . . 10 (𝑑 ∈ Pred(𝑅, 𝐴, 𝑎) → (𝑑𝑎𝑏𝑏𝑐𝑐))
148 pm2.27 42 . . . . . . . . . 10 ((𝑑𝑎𝑏𝑏𝑐𝑐) → (((𝑑𝑎𝑏𝑏𝑐𝑐) → 𝜓) → 𝜓))
149147, 148syl 17 . . . . . . . . 9 (𝑑 ∈ Pred(𝑅, 𝐴, 𝑎) → (((𝑑𝑎𝑏𝑏𝑐𝑐) → 𝜓) → 𝜓))
150149ralimia 3090 . . . . . . . 8 (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)((𝑑𝑎𝑏𝑏𝑐𝑐) → 𝜓) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓)
151141, 150syl 17 . . . . . . 7 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓)
152 ssun2 4080 . . . . . . . . . . 11 {𝑎} ⊆ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})
153 ssralv 3960 . . . . . . . . . . 11 ({𝑎} ⊆ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) → (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃)))
154152, 153ax-mp 5 . . . . . . . . . 10 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
15556ralimi 3092 . . . . . . . . . 10 (∀𝑑 ∈ {𝑎}∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
156154, 155syl 17 . . . . . . . . 9 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
157 vex 3413 . . . . . . . . . 10 𝑎 ∈ V
158 neeq1 3013 . . . . . . . . . . . . 13 (𝑑 = 𝑎 → (𝑑𝑎𝑎𝑎))
159 biidd 265 . . . . . . . . . . . . 13 (𝑑 = 𝑎 → (𝑒𝑏𝑒𝑏))
160 biidd 265 . . . . . . . . . . . . 13 (𝑑 = 𝑎 → (𝑓𝑐𝑓𝑐))
161158, 159, 1603orbi123d 1432 . . . . . . . . . . . 12 (𝑑 = 𝑎 → ((𝑑𝑎𝑒𝑏𝑓𝑐) ↔ (𝑎𝑎𝑒𝑏𝑓𝑐)))
162 xpord3ind.13 . . . . . . . . . . . . . 14 (𝑎 = 𝑑 → (𝜏𝜃))
163162equcoms 2027 . . . . . . . . . . . . 13 (𝑑 = 𝑎 → (𝜏𝜃))
164163bicomd 226 . . . . . . . . . . . 12 (𝑑 = 𝑎 → (𝜃𝜏))
165161, 164imbi12d 348 . . . . . . . . . . 11 (𝑑 = 𝑎 → (((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) ↔ ((𝑎𝑎𝑒𝑏𝑓𝑐) → 𝜏)))
1661652ralbidv 3128 . . . . . . . . . 10 (𝑑 = 𝑎 → (∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) ↔ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎𝑎𝑒𝑏𝑓𝑐) → 𝜏)))
167157, 166ralsn 4579 . . . . . . . . 9 (∀𝑑 ∈ {𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) ↔ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎𝑎𝑒𝑏𝑓𝑐) → 𝜏))
168156, 167sylib 221 . . . . . . . 8 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎𝑎𝑒𝑏𝑓𝑐) → 𝜏))
169623mix3d 1335 . . . . . . . . . . 11 (𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) → (𝑎𝑎𝑒𝑏𝑓𝑐))
170 pm2.27 42 . . . . . . . . . . 11 ((𝑎𝑎𝑒𝑏𝑓𝑐) → (((𝑎𝑎𝑒𝑏𝑓𝑐) → 𝜏) → 𝜏))
171169, 170syl 17 . . . . . . . . . 10 (𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) → (((𝑎𝑎𝑒𝑏𝑓𝑐) → 𝜏) → 𝜏))
172171ralimia 3090 . . . . . . . . 9 (∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎𝑎𝑒𝑏𝑓𝑐) → 𝜏) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏)
173172ralimi 3092 . . . . . . . 8 (∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎𝑎𝑒𝑏𝑓𝑐) → 𝜏) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏)
174168, 173syl 17 . . . . . . 7 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏)
17573ralimi 3092 . . . . . . . . . 10 (∀𝑑 ∈ {𝑎}∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
176154, 175syl 17 . . . . . . . . 9 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
1771652ralbidv 3128 . . . . . . . . . . 11 (𝑑 = 𝑎 → (∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) ↔ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑎𝑎𝑒𝑏𝑓𝑐) → 𝜏)))
178157, 177ralsn 4579 . . . . . . . . . 10 (∀𝑑 ∈ {𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) ↔ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑎𝑎𝑒𝑏𝑓𝑐) → 𝜏))
179 biidd 265 . . . . . . . . . . . . . 14 (𝑓 = 𝑐 → (𝑎𝑎𝑎𝑎))
180179, 78, 793orbi123d 1432 . . . . . . . . . . . . 13 (𝑓 = 𝑐 → ((𝑎𝑎𝑒𝑏𝑓𝑐) ↔ (𝑎𝑎𝑒𝑏𝑐𝑐)))
181 xpord3ind.16 . . . . . . . . . . . . . . 15 (𝑐 = 𝑓 → (𝜎𝜏))
182181bicomd 226 . . . . . . . . . . . . . 14 (𝑐 = 𝑓 → (𝜏𝜎))
183182equcoms 2027 . . . . . . . . . . . . 13 (𝑓 = 𝑐 → (𝜏𝜎))
184180, 183imbi12d 348 . . . . . . . . . . . 12 (𝑓 = 𝑐 → (((𝑎𝑎𝑒𝑏𝑓𝑐) → 𝜏) ↔ ((𝑎𝑎𝑒𝑏𝑐𝑐) → 𝜎)))
18576, 184ralsn 4579 . . . . . . . . . . 11 (∀𝑓 ∈ {𝑐} ((𝑎𝑎𝑒𝑏𝑓𝑐) → 𝜏) ↔ ((𝑎𝑎𝑒𝑏𝑐𝑐) → 𝜎))
186185ralbii 3097 . . . . . . . . . 10 (∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑎𝑎𝑒𝑏𝑓𝑐) → 𝜏) ↔ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑎𝑎𝑒𝑏𝑐𝑐) → 𝜎))
187178, 186bitri 278 . . . . . . . . 9 (∀𝑑 ∈ {𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) ↔ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑎𝑎𝑒𝑏𝑐𝑐) → 𝜎))
188176, 187sylib 221 . . . . . . . 8 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑎𝑎𝑒𝑏𝑐𝑐) → 𝜎))
189923mix2d 1334 . . . . . . . . . 10 (𝑒 ∈ Pred(𝑆, 𝐵, 𝑏) → (𝑎𝑎𝑒𝑏𝑐𝑐))
190 pm2.27 42 . . . . . . . . . 10 ((𝑎𝑎𝑒𝑏𝑐𝑐) → (((𝑎𝑎𝑒𝑏𝑐𝑐) → 𝜎) → 𝜎))
191189, 190syl 17 . . . . . . . . 9 (𝑒 ∈ Pred(𝑆, 𝐵, 𝑏) → (((𝑎𝑎𝑒𝑏𝑐𝑐) → 𝜎) → 𝜎))
192191ralimia 3090 . . . . . . . 8 (∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑎𝑎𝑒𝑏𝑐𝑐) → 𝜎) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎)
193188, 192syl 17 . . . . . . 7 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎)
194151, 174, 1933jca 1125 . . . . . 6 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎))
195103ralimi 3092 . . . . . . . . 9 (∀𝑑 ∈ {𝑎}∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
196154, 195syl 17 . . . . . . . 8 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃))
1971652ralbidv 3128 . . . . . . . . . 10 (𝑑 = 𝑎 → (∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) ↔ ∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎𝑎𝑒𝑏𝑓𝑐) → 𝜏)))
198157, 197ralsn 4579 . . . . . . . . 9 (∀𝑑 ∈ {𝑎}∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) ↔ ∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎𝑎𝑒𝑏𝑓𝑐) → 𝜏))
199 biidd 265 . . . . . . . . . . . . 13 (𝑒 = 𝑏 → (𝑎𝑎𝑎𝑎))
200199, 108, 1093orbi123d 1432 . . . . . . . . . . . 12 (𝑒 = 𝑏 → ((𝑎𝑎𝑒𝑏𝑓𝑐) ↔ (𝑎𝑎𝑏𝑏𝑓𝑐)))
201 xpord3ind.14 . . . . . . . . . . . . . 14 (𝑏 = 𝑒 → (𝜂𝜏))
202201equcoms 2027 . . . . . . . . . . . . 13 (𝑒 = 𝑏 → (𝜂𝜏))
203202bicomd 226 . . . . . . . . . . . 12 (𝑒 = 𝑏 → (𝜏𝜂))
204200, 203imbi12d 348 . . . . . . . . . . 11 (𝑒 = 𝑏 → (((𝑎𝑎𝑒𝑏𝑓𝑐) → 𝜏) ↔ ((𝑎𝑎𝑏𝑏𝑓𝑐) → 𝜂)))
205204ralbidv 3126 . . . . . . . . . 10 (𝑒 = 𝑏 → (∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎𝑎𝑒𝑏𝑓𝑐) → 𝜏) ↔ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎𝑎𝑏𝑏𝑓𝑐) → 𝜂)))
206106, 205ralsn 4579 . . . . . . . . 9 (∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎𝑎𝑒𝑏𝑓𝑐) → 𝜏) ↔ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎𝑎𝑏𝑏𝑓𝑐) → 𝜂))
207198, 206bitri 278 . . . . . . . 8 (∀𝑑 ∈ {𝑎}∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) ↔ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎𝑎𝑏𝑏𝑓𝑐) → 𝜂))
208196, 207sylib 221 . . . . . . 7 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎𝑎𝑏𝑏𝑓𝑐) → 𝜂))
209623mix3d 1335 . . . . . . . . 9 (𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) → (𝑎𝑎𝑏𝑏𝑓𝑐))
210 pm2.27 42 . . . . . . . . 9 ((𝑎𝑎𝑏𝑏𝑓𝑐) → (((𝑎𝑎𝑏𝑏𝑓𝑐) → 𝜂) → 𝜂))
211209, 210syl 17 . . . . . . . 8 (𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) → (((𝑎𝑎𝑏𝑏𝑓𝑐) → 𝜂) → 𝜂))
212211ralimia 3090 . . . . . . 7 (∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎𝑎𝑏𝑏𝑓𝑐) → 𝜂) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂)
213208, 212syl 17 . . . . . 6 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂)
214126, 194, 2133jca 1125 . . . . 5 (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → ((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂))
215 xpord3ind.i . . . . 5 ((𝑎𝐴𝑏𝐵𝑐𝐶) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑))
216214, 215syl5 34 . . . 4 ((𝑎𝐴𝑏𝐵𝑐𝐶) → (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑𝑎𝑒𝑏𝑓𝑐) → 𝜃) → 𝜑))
21745, 216sylbid 243 . . 3 ((𝑎𝐴𝑏𝐵𝑐𝐶) → (∀𝑑𝑒𝑓(⟨⟨𝑑, 𝑒⟩, 𝑓⟩ ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), ⟨⟨𝑎, 𝑏⟩, 𝑐⟩) → 𝜃) → 𝜑))
218 xpord3ind.10 . . 3 (𝑎 = 𝑑 → (𝜑𝜓))
219 xpord3ind.17 . . 3 (𝑎 = 𝑋 → (𝜑𝜌))
220 xpord3ind.18 . . 3 (𝑏 = 𝑌 → (𝜌𝜇))
221 xpord3ind.19 . . 3 (𝑐 = 𝑍 → (𝜇𝜆))
222217, 218, 134, 81, 219, 220, 221frpoins3xp3g 33345 . 2 (((𝑈 Fr ((𝐴 × 𝐵) × 𝐶) ∧ 𝑈 Po ((𝐴 × 𝐵) × 𝐶) ∧ 𝑈 Se ((𝐴 × 𝐵) × 𝐶)) ∧ (𝑋𝐴𝑌𝐵𝑍𝐶)) → 𝜆)
22326, 222mpan 689 1 ((𝑋𝐴𝑌𝐵𝑍𝐶) → 𝜆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3o 1083  w3a 1084  wal 1536   = wceq 1538  wtru 1539  wcel 2111  wne 2951  wral 3070  cdif 3857  cun 3858  wss 3860  {csn 4525  cop 4531   class class class wbr 5036  {copab 5098   Po wpo 5445   Fr wfr 5484   Se wse 5485   × cxp 5526  Predcpred 6130  cfv 6340  1st c1st 7697  2nd c2nd 7698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-po 5447  df-fr 5487  df-se 5488  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-iota 6299  df-fun 6342  df-fv 6348  df-1st 7699  df-2nd 7700
This theorem is referenced by:  on3ind  33426
  Copyright terms: Public domain W3C validator