| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpord3ind | Structured version Visualization version GIF version | ||
| Description: Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 4-Sep-2024.) |
| Ref | Expression |
|---|---|
| xpord3ind.1 | ⊢ 𝑅 Fr 𝐴 |
| xpord3ind.2 | ⊢ 𝑅 Po 𝐴 |
| xpord3ind.3 | ⊢ 𝑅 Se 𝐴 |
| xpord3ind.4 | ⊢ 𝑆 Fr 𝐵 |
| xpord3ind.5 | ⊢ 𝑆 Po 𝐵 |
| xpord3ind.6 | ⊢ 𝑆 Se 𝐵 |
| xpord3ind.7 | ⊢ 𝑇 Fr 𝐶 |
| xpord3ind.8 | ⊢ 𝑇 Po 𝐶 |
| xpord3ind.9 | ⊢ 𝑇 Se 𝐶 |
| xpord3ind.10 | ⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜓)) |
| xpord3ind.11 | ⊢ (𝑏 = 𝑒 → (𝜓 ↔ 𝜒)) |
| xpord3ind.12 | ⊢ (𝑐 = 𝑓 → (𝜒 ↔ 𝜃)) |
| xpord3ind.13 | ⊢ (𝑎 = 𝑑 → (𝜏 ↔ 𝜃)) |
| xpord3ind.14 | ⊢ (𝑏 = 𝑒 → (𝜂 ↔ 𝜏)) |
| xpord3ind.15 | ⊢ (𝑏 = 𝑒 → (𝜁 ↔ 𝜃)) |
| xpord3ind.16 | ⊢ (𝑐 = 𝑓 → (𝜎 ↔ 𝜏)) |
| xpord3ind.17 | ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜌)) |
| xpord3ind.18 | ⊢ (𝑏 = 𝑌 → (𝜌 ↔ 𝜇)) |
| xpord3ind.19 | ⊢ (𝑐 = 𝑍 → (𝜇 ↔ 𝜆)) |
| xpord3ind.i | ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑)) |
| Ref | Expression |
|---|---|
| xpord3ind | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶) → 𝜆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶) → 𝑋 ∈ 𝐴) | |
| 2 | simp2 1137 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶) → 𝑌 ∈ 𝐵) | |
| 3 | simp3 1138 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶) → 𝑍 ∈ 𝐶) | |
| 4 | xpord3ind.1 | . . 3 ⊢ 𝑅 Fr 𝐴 | |
| 5 | ax-1 6 | . . 3 ⊢ (𝑅 Fr 𝐴 → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶) → 𝑅 Fr 𝐴)) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶) → 𝑅 Fr 𝐴) |
| 7 | xpord3ind.2 | . . 3 ⊢ 𝑅 Po 𝐴 | |
| 8 | 7 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶) → 𝑅 Po 𝐴) |
| 9 | xpord3ind.3 | . . 3 ⊢ 𝑅 Se 𝐴 | |
| 10 | 9 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶) → 𝑅 Se 𝐴) |
| 11 | xpord3ind.4 | . . 3 ⊢ 𝑆 Fr 𝐵 | |
| 12 | 11 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶) → 𝑆 Fr 𝐵) |
| 13 | xpord3ind.5 | . . 3 ⊢ 𝑆 Po 𝐵 | |
| 14 | 13 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶) → 𝑆 Po 𝐵) |
| 15 | xpord3ind.6 | . . 3 ⊢ 𝑆 Se 𝐵 | |
| 16 | 15 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶) → 𝑆 Se 𝐵) |
| 17 | xpord3ind.7 | . . 3 ⊢ 𝑇 Fr 𝐶 | |
| 18 | 17 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶) → 𝑇 Fr 𝐶) |
| 19 | xpord3ind.8 | . . 3 ⊢ 𝑇 Po 𝐶 | |
| 20 | 19 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶) → 𝑇 Po 𝐶) |
| 21 | xpord3ind.9 | . . 3 ⊢ 𝑇 Se 𝐶 | |
| 22 | 21 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶) → 𝑇 Se 𝐶) |
| 23 | xpord3ind.10 | . 2 ⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜓)) | |
| 24 | xpord3ind.11 | . 2 ⊢ (𝑏 = 𝑒 → (𝜓 ↔ 𝜒)) | |
| 25 | xpord3ind.12 | . 2 ⊢ (𝑐 = 𝑓 → (𝜒 ↔ 𝜃)) | |
| 26 | xpord3ind.13 | . 2 ⊢ (𝑎 = 𝑑 → (𝜏 ↔ 𝜃)) | |
| 27 | xpord3ind.14 | . 2 ⊢ (𝑏 = 𝑒 → (𝜂 ↔ 𝜏)) | |
| 28 | xpord3ind.15 | . 2 ⊢ (𝑏 = 𝑒 → (𝜁 ↔ 𝜃)) | |
| 29 | xpord3ind.16 | . 2 ⊢ (𝑐 = 𝑓 → (𝜎 ↔ 𝜏)) | |
| 30 | xpord3ind.17 | . 2 ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜌)) | |
| 31 | xpord3ind.18 | . 2 ⊢ (𝑏 = 𝑌 → (𝜌 ↔ 𝜇)) | |
| 32 | xpord3ind.19 | . 2 ⊢ (𝑐 = 𝑍 → (𝜇 ↔ 𝜆)) | |
| 33 | xpord3ind.i | . . 3 ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑)) | |
| 34 | 33 | adantl 481 | . 2 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑)) |
| 35 | 1, 2, 3, 6, 8, 10, 12, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34 | xpord3indd 8085 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶) → 𝜆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Po wpo 5520 Fr wfr 5564 Se wse 5565 Predcpred 6247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-ot 4582 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-fr 5567 df-se 5568 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-iota 6437 df-fun 6483 df-fv 6489 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: on3ind 8585 no3inds 27901 |
| Copyright terms: Public domain | W3C validator |