Proof of Theorem xpord3ind
Step | Hyp | Ref
| Expression |
1 | | xpord3.1 |
. . . . 5
⊢ 𝑈 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st
‘(1st ‘𝑥))𝑅(1st ‘(1st
‘𝑦)) ∨
(1st ‘(1st ‘𝑥)) = (1st ‘(1st
‘𝑦))) ∧
((2nd ‘(1st ‘𝑥))𝑆(2nd ‘(1st
‘𝑦)) ∨
(2nd ‘(1st ‘𝑥)) = (2nd ‘(1st
‘𝑦))) ∧
((2nd ‘𝑥)𝑇(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦))) ∧ 𝑥 ≠ 𝑦))} |
2 | | xpord3ind.1 |
. . . . . 6
⊢ 𝑅 Fr 𝐴 |
3 | 2 | a1i 11 |
. . . . 5
⊢ (⊤
→ 𝑅 Fr 𝐴) |
4 | | xpord3ind.4 |
. . . . . 6
⊢ 𝑆 Fr 𝐵 |
5 | 4 | a1i 11 |
. . . . 5
⊢ (⊤
→ 𝑆 Fr 𝐵) |
6 | | xpord3ind.7 |
. . . . . 6
⊢ 𝑇 Fr 𝐶 |
7 | 6 | a1i 11 |
. . . . 5
⊢ (⊤
→ 𝑇 Fr 𝐶) |
8 | 1, 3, 5, 7 | frxp3 33724 |
. . . 4
⊢ (⊤
→ 𝑈 Fr ((𝐴 × 𝐵) × 𝐶)) |
9 | 8 | mptru 1546 |
. . 3
⊢ 𝑈 Fr ((𝐴 × 𝐵) × 𝐶) |
10 | | xpord3ind.2 |
. . . . . 6
⊢ 𝑅 Po 𝐴 |
11 | 10 | a1i 11 |
. . . . 5
⊢ (⊤
→ 𝑅 Po 𝐴) |
12 | | xpord3ind.5 |
. . . . . 6
⊢ 𝑆 Po 𝐵 |
13 | 12 | a1i 11 |
. . . . 5
⊢ (⊤
→ 𝑆 Po 𝐵) |
14 | | xpord3ind.8 |
. . . . . 6
⊢ 𝑇 Po 𝐶 |
15 | 14 | a1i 11 |
. . . . 5
⊢ (⊤
→ 𝑇 Po 𝐶) |
16 | 1, 11, 13, 15 | poxp3 33723 |
. . . 4
⊢ (⊤
→ 𝑈 Po ((𝐴 × 𝐵) × 𝐶)) |
17 | 16 | mptru 1546 |
. . 3
⊢ 𝑈 Po ((𝐴 × 𝐵) × 𝐶) |
18 | | xpord3ind.3 |
. . . . . 6
⊢ 𝑅 Se 𝐴 |
19 | 18 | a1i 11 |
. . . . 5
⊢ (⊤
→ 𝑅 Se 𝐴) |
20 | | xpord3ind.6 |
. . . . . 6
⊢ 𝑆 Se 𝐵 |
21 | 20 | a1i 11 |
. . . . 5
⊢ (⊤
→ 𝑆 Se 𝐵) |
22 | | xpord3ind.9 |
. . . . . 6
⊢ 𝑇 Se 𝐶 |
23 | 22 | a1i 11 |
. . . . 5
⊢ (⊤
→ 𝑇 Se 𝐶) |
24 | 1, 19, 21, 23 | sexp3 33726 |
. . . 4
⊢ (⊤
→ 𝑈 Se ((𝐴 × 𝐵) × 𝐶)) |
25 | 24 | mptru 1546 |
. . 3
⊢ 𝑈 Se ((𝐴 × 𝐵) × 𝐶) |
26 | 9, 17, 25 | 3pm3.2i 1337 |
. 2
⊢ (𝑈 Fr ((𝐴 × 𝐵) × 𝐶) ∧ 𝑈 Po ((𝐴 × 𝐵) × 𝐶) ∧ 𝑈 Se ((𝐴 × 𝐵) × 𝐶)) |
27 | 1 | xpord3pred 33725 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈〈𝑎, 𝑏〉, 𝑐〉) = ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {〈〈𝑎, 𝑏〉, 𝑐〉})) |
28 | 27 | eleq2d 2824 |
. . . . . . . . 9
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) → (〈〈𝑑, 𝑒〉, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈〈𝑎, 𝑏〉, 𝑐〉) ↔ 〈〈𝑑, 𝑒〉, 𝑓〉 ∈ ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {〈〈𝑎, 𝑏〉, 𝑐〉}))) |
29 | 28 | imbi1d 341 |
. . . . . . . 8
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) → ((〈〈𝑑, 𝑒〉, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈〈𝑎, 𝑏〉, 𝑐〉) → 𝜃) ↔ (〈〈𝑑, 𝑒〉, 𝑓〉 ∈ ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {〈〈𝑎, 𝑏〉, 𝑐〉}) → 𝜃))) |
30 | | eldifsn 4717 |
. . . . . . . . . . 11
⊢
(〈〈𝑑,
𝑒〉, 𝑓〉 ∈ ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {〈〈𝑎, 𝑏〉, 𝑐〉}) ↔ (〈〈𝑑, 𝑒〉, 𝑓〉 ∈ (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∧ 〈〈𝑑, 𝑒〉, 𝑓〉 ≠ 〈〈𝑎, 𝑏〉, 𝑐〉)) |
31 | | ot2elxp 33582 |
. . . . . . . . . . . 12
⊢
(〈〈𝑑,
𝑒〉, 𝑓〉 ∈ (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ↔ (𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐}))) |
32 | | vex 3426 |
. . . . . . . . . . . . 13
⊢ 𝑑 ∈ V |
33 | | vex 3426 |
. . . . . . . . . . . . 13
⊢ 𝑒 ∈ V |
34 | | vex 3426 |
. . . . . . . . . . . . 13
⊢ 𝑓 ∈ V |
35 | 32, 33, 34 | otthne 33585 |
. . . . . . . . . . . 12
⊢
(〈〈𝑑,
𝑒〉, 𝑓〉 ≠ 〈〈𝑎, 𝑏〉, 𝑐〉 ↔ (𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐)) |
36 | 31, 35 | anbi12i 626 |
. . . . . . . . . . 11
⊢
((〈〈𝑑,
𝑒〉, 𝑓〉 ∈ (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∧ 〈〈𝑑, 𝑒〉, 𝑓〉 ≠ 〈〈𝑎, 𝑏〉, 𝑐〉) ↔ ((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∧ (𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐))) |
37 | 30, 36 | bitri 274 |
. . . . . . . . . 10
⊢
(〈〈𝑑,
𝑒〉, 𝑓〉 ∈ ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {〈〈𝑎, 𝑏〉, 𝑐〉}) ↔ ((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∧ (𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐))) |
38 | 37 | imbi1i 349 |
. . . . . . . . 9
⊢
((〈〈𝑑,
𝑒〉, 𝑓〉 ∈ ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {〈〈𝑎, 𝑏〉, 𝑐〉}) → 𝜃) ↔ (((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∧ (𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐)) → 𝜃)) |
39 | | impexp 450 |
. . . . . . . . 9
⊢ ((((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∧ (𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐)) → 𝜃) ↔ ((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) → ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
40 | 38, 39 | bitr2i 275 |
. . . . . . . 8
⊢ (((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) → ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) ↔ (〈〈𝑑, 𝑒〉, 𝑓〉 ∈ ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {〈〈𝑎, 𝑏〉, 𝑐〉}) → 𝜃)) |
41 | 29, 40 | bitr4di 288 |
. . . . . . 7
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) → ((〈〈𝑑, 𝑒〉, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈〈𝑎, 𝑏〉, 𝑐〉) → 𝜃) ↔ ((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) → ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)))) |
42 | 41 | albidv 1924 |
. . . . . 6
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) → (∀𝑓(〈〈𝑑, 𝑒〉, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈〈𝑎, 𝑏〉, 𝑐〉) → 𝜃) ↔ ∀𝑓((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) → ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)))) |
43 | 42 | 2albidv 1927 |
. . . . 5
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) → (∀𝑑∀𝑒∀𝑓(〈〈𝑑, 𝑒〉, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈〈𝑎, 𝑏〉, 𝑐〉) → 𝜃) ↔ ∀𝑑∀𝑒∀𝑓((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) → ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)))) |
44 | | r3al 3125 |
. . . . 5
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑑∀𝑒∀𝑓((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) → ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
45 | 43, 44 | bitr4di 288 |
. . . 4
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) → (∀𝑑∀𝑒∀𝑓(〈〈𝑑, 𝑒〉, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈〈𝑎, 𝑏〉, 𝑐〉) → 𝜃) ↔ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
46 | | ssun1 4102 |
. . . . . . . . 9
⊢
Pred(𝑅, 𝐴, 𝑎) ⊆ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) |
47 | | ssralv 3983 |
. . . . . . . . 9
⊢
(Pred(𝑅, 𝐴, 𝑎) ⊆ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) → (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
48 | 46, 47 | ax-mp 5 |
. . . . . . . 8
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
49 | | ssun1 4102 |
. . . . . . . . . . 11
⊢
Pred(𝑆, 𝐵, 𝑏) ⊆ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) |
50 | | ssralv 3983 |
. . . . . . . . . . 11
⊢
(Pred(𝑆, 𝐵, 𝑏) ⊆ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) → (∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
51 | 49, 50 | ax-mp 5 |
. . . . . . . . . 10
⊢
(∀𝑒 ∈
(Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
52 | | ssun1 4102 |
. . . . . . . . . . . 12
⊢
Pred(𝑇, 𝐶, 𝑐) ⊆ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐}) |
53 | | ssralv 3983 |
. . . . . . . . . . . 12
⊢
(Pred(𝑇, 𝐶, 𝑐) ⊆ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐}) → (∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
54 | 52, 53 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(∀𝑓 ∈
(Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
55 | 54 | ralimi 3086 |
. . . . . . . . . 10
⊢
(∀𝑒 ∈
Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
56 | 51, 55 | syl 17 |
. . . . . . . . 9
⊢
(∀𝑒 ∈
(Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
57 | 56 | ralimi 3086 |
. . . . . . . 8
⊢
(∀𝑑 ∈
Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
58 | | predpoirr 6225 |
. . . . . . . . . . . . . . 15
⊢ (𝑇 Po 𝐶 → ¬ 𝑐 ∈ Pred(𝑇, 𝐶, 𝑐)) |
59 | 14, 58 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ¬
𝑐 ∈ Pred(𝑇, 𝐶, 𝑐) |
60 | | eleq1w 2821 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑐 → (𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) ↔ 𝑐 ∈ Pred(𝑇, 𝐶, 𝑐))) |
61 | 59, 60 | mtbiri 326 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑐 → ¬ 𝑓 ∈ Pred(𝑇, 𝐶, 𝑐)) |
62 | 61 | necon2ai 2972 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) → 𝑓 ≠ 𝑐) |
63 | 62 | 3mix3d 1336 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) → (𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐)) |
64 | | pm2.27 42 |
. . . . . . . . . . 11
⊢ ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → (((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → 𝜃)) |
65 | 63, 64 | syl 17 |
. . . . . . . . . 10
⊢ (𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) → (((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → 𝜃)) |
66 | 65 | ralimia 3084 |
. . . . . . . . 9
⊢
(∀𝑓 ∈
Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃) |
67 | 66 | 2ralimi 3087 |
. . . . . . . 8
⊢
(∀𝑑 ∈
Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃) |
68 | 48, 57, 67 | 3syl 18 |
. . . . . . 7
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃) |
69 | | ssun2 4103 |
. . . . . . . . . . . . . 14
⊢ {𝑐} ⊆ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐}) |
70 | | ssralv 3983 |
. . . . . . . . . . . . . 14
⊢ ({𝑐} ⊆ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐}) → (∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
71 | 69, 70 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(∀𝑓 ∈
(Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
72 | 71 | ralimi 3086 |
. . . . . . . . . . . 12
⊢
(∀𝑒 ∈
Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
73 | 51, 72 | syl 17 |
. . . . . . . . . . 11
⊢
(∀𝑒 ∈
(Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
74 | 73 | ralimi 3086 |
. . . . . . . . . 10
⊢
(∀𝑑 ∈
Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
75 | 48, 74 | syl 17 |
. . . . . . . . 9
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
76 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑐 ∈ V |
77 | | biidd 261 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑐 → (𝑑 ≠ 𝑎 ↔ 𝑑 ≠ 𝑎)) |
78 | | biidd 261 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑐 → (𝑒 ≠ 𝑏 ↔ 𝑒 ≠ 𝑏)) |
79 | | neeq1 3005 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑐 → (𝑓 ≠ 𝑐 ↔ 𝑐 ≠ 𝑐)) |
80 | 77, 78, 79 | 3orbi123d 1433 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑐 → ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) ↔ (𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐))) |
81 | | xpord3ind.12 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑓 → (𝜒 ↔ 𝜃)) |
82 | 81 | bicomd 222 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑓 → (𝜃 ↔ 𝜒)) |
83 | 82 | equcoms 2024 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑐 → (𝜃 ↔ 𝜒)) |
84 | 80, 83 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑐 → (((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒))) |
85 | 76, 84 | ralsn 4614 |
. . . . . . . . . 10
⊢
(∀𝑓 ∈
{𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒)) |
86 | 85 | 2ralbii 3091 |
. . . . . . . . 9
⊢
(∀𝑑 ∈
Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒)) |
87 | 75, 86 | sylib 217 |
. . . . . . . 8
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒)) |
88 | | predpoirr 6225 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 Po 𝐵 → ¬ 𝑏 ∈ Pred(𝑆, 𝐵, 𝑏)) |
89 | 12, 88 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ¬
𝑏 ∈ Pred(𝑆, 𝐵, 𝑏) |
90 | | eleq1w 2821 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = 𝑏 → (𝑒 ∈ Pred(𝑆, 𝐵, 𝑏) ↔ 𝑏 ∈ Pred(𝑆, 𝐵, 𝑏))) |
91 | 89, 90 | mtbiri 326 |
. . . . . . . . . . . . 13
⊢ (𝑒 = 𝑏 → ¬ 𝑒 ∈ Pred(𝑆, 𝐵, 𝑏)) |
92 | 91 | necon2ai 2972 |
. . . . . . . . . . . 12
⊢ (𝑒 ∈ Pred(𝑆, 𝐵, 𝑏) → 𝑒 ≠ 𝑏) |
93 | 92 | 3mix2d 1335 |
. . . . . . . . . . 11
⊢ (𝑒 ∈ Pred(𝑆, 𝐵, 𝑏) → (𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐)) |
94 | | pm2.27 42 |
. . . . . . . . . . 11
⊢ ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → (((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒) → 𝜒)) |
95 | 93, 94 | syl 17 |
. . . . . . . . . 10
⊢ (𝑒 ∈ Pred(𝑆, 𝐵, 𝑏) → (((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒) → 𝜒)) |
96 | 95 | ralimia 3084 |
. . . . . . . . 9
⊢
(∀𝑒 ∈
Pred (𝑆, 𝐵, 𝑏)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒) |
97 | 96 | ralimi 3086 |
. . . . . . . 8
⊢
(∀𝑑 ∈
Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒) |
98 | 87, 97 | syl 17 |
. . . . . . 7
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒) |
99 | | ssun2 4103 |
. . . . . . . . . . . . 13
⊢ {𝑏} ⊆ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) |
100 | | ssralv 3983 |
. . . . . . . . . . . . 13
⊢ ({𝑏} ⊆ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) → (∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ {𝑏}∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
101 | 99, 100 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(∀𝑒 ∈
(Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ {𝑏}∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
102 | 54 | ralimi 3086 |
. . . . . . . . . . . 12
⊢
(∀𝑒 ∈
{𝑏}∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
103 | 101, 102 | syl 17 |
. . . . . . . . . . 11
⊢
(∀𝑒 ∈
(Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
104 | 103 | ralimi 3086 |
. . . . . . . . . 10
⊢
(∀𝑑 ∈
Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
105 | 48, 104 | syl 17 |
. . . . . . . . 9
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
106 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑏 ∈ V |
107 | | biidd 261 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = 𝑏 → (𝑑 ≠ 𝑎 ↔ 𝑑 ≠ 𝑎)) |
108 | | neeq1 3005 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = 𝑏 → (𝑒 ≠ 𝑏 ↔ 𝑏 ≠ 𝑏)) |
109 | | biidd 261 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = 𝑏 → (𝑓 ≠ 𝑐 ↔ 𝑓 ≠ 𝑐)) |
110 | 107, 108,
109 | 3orbi123d 1433 |
. . . . . . . . . . . . 13
⊢ (𝑒 = 𝑏 → ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) ↔ (𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐))) |
111 | | xpord3ind.15 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑒 → (𝜁 ↔ 𝜃)) |
112 | | equcom 2022 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑒 ↔ 𝑒 = 𝑏) |
113 | | bicom 221 |
. . . . . . . . . . . . . 14
⊢ ((𝜁 ↔ 𝜃) ↔ (𝜃 ↔ 𝜁)) |
114 | 111, 112,
113 | 3imtr3i 290 |
. . . . . . . . . . . . 13
⊢ (𝑒 = 𝑏 → (𝜃 ↔ 𝜁)) |
115 | 110, 114 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑒 = 𝑏 → (((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜁))) |
116 | 115 | ralbidv 3120 |
. . . . . . . . . . 11
⊢ (𝑒 = 𝑏 → (∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜁))) |
117 | 106, 116 | ralsn 4614 |
. . . . . . . . . 10
⊢
(∀𝑒 ∈
{𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜁)) |
118 | 117 | ralbii 3090 |
. . . . . . . . 9
⊢
(∀𝑑 ∈
Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜁)) |
119 | 105, 118 | sylib 217 |
. . . . . . . 8
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜁)) |
120 | 62 | 3mix3d 1336 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) → (𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐)) |
121 | | pm2.27 42 |
. . . . . . . . . . 11
⊢ ((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → (((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜁) → 𝜁)) |
122 | 120, 121 | syl 17 |
. . . . . . . . . 10
⊢ (𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) → (((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜁) → 𝜁)) |
123 | 122 | ralimia 3084 |
. . . . . . . . 9
⊢
(∀𝑓 ∈
Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜁) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) |
124 | 123 | ralimi 3086 |
. . . . . . . 8
⊢
(∀𝑑 ∈
Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜁) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) |
125 | 119, 124 | syl 17 |
. . . . . . 7
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) |
126 | 68, 98, 125 | 3jca 1126 |
. . . . . 6
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁)) |
127 | 71 | ralimi 3086 |
. . . . . . . . . . . 12
⊢
(∀𝑒 ∈
{𝑏}∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ {𝑏}∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
128 | 101, 127 | syl 17 |
. . . . . . . . . . 11
⊢
(∀𝑒 ∈
(Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ {𝑏}∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
129 | 128 | ralimi 3086 |
. . . . . . . . . 10
⊢
(∀𝑑 ∈
Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ {𝑏}∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
130 | 48, 129 | syl 17 |
. . . . . . . . 9
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ {𝑏}∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
131 | 85 | ralbii 3090 |
. . . . . . . . . . 11
⊢
(∀𝑒 ∈
{𝑏}∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑒 ∈ {𝑏} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒)) |
132 | | biidd 261 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = 𝑏 → (𝑐 ≠ 𝑐 ↔ 𝑐 ≠ 𝑐)) |
133 | 107, 108,
132 | 3orbi123d 1433 |
. . . . . . . . . . . . 13
⊢ (𝑒 = 𝑏 → ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) ↔ (𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐))) |
134 | | xpord3ind.11 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑒 → (𝜓 ↔ 𝜒)) |
135 | 134 | bicomd 222 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑒 → (𝜒 ↔ 𝜓)) |
136 | 135 | equcoms 2024 |
. . . . . . . . . . . . 13
⊢ (𝑒 = 𝑏 → (𝜒 ↔ 𝜓)) |
137 | 133, 136 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑒 = 𝑏 → (((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒) ↔ ((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜓))) |
138 | 106, 137 | ralsn 4614 |
. . . . . . . . . . 11
⊢
(∀𝑒 ∈
{𝑏} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒) ↔ ((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜓)) |
139 | 131, 138 | bitri 274 |
. . . . . . . . . 10
⊢
(∀𝑒 ∈
{𝑏}∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜓)) |
140 | 139 | ralbii 3090 |
. . . . . . . . 9
⊢
(∀𝑑 ∈
Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ {𝑏}∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜓)) |
141 | 130, 140 | sylib 217 |
. . . . . . . 8
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜓)) |
142 | | predpoirr 6225 |
. . . . . . . . . . . . . 14
⊢ (𝑅 Po 𝐴 → ¬ 𝑎 ∈ Pred(𝑅, 𝐴, 𝑎)) |
143 | 10, 142 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ¬
𝑎 ∈ Pred(𝑅, 𝐴, 𝑎) |
144 | | eleq1w 2821 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝑎 → (𝑑 ∈ Pred(𝑅, 𝐴, 𝑎) ↔ 𝑎 ∈ Pred(𝑅, 𝐴, 𝑎))) |
145 | 143, 144 | mtbiri 326 |
. . . . . . . . . . . 12
⊢ (𝑑 = 𝑎 → ¬ 𝑑 ∈ Pred(𝑅, 𝐴, 𝑎)) |
146 | 145 | necon2ai 2972 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ Pred(𝑅, 𝐴, 𝑎) → 𝑑 ≠ 𝑎) |
147 | 146 | 3mix1d 1334 |
. . . . . . . . . 10
⊢ (𝑑 ∈ Pred(𝑅, 𝐴, 𝑎) → (𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐)) |
148 | | pm2.27 42 |
. . . . . . . . . 10
⊢ ((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → (((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜓) → 𝜓)) |
149 | 147, 148 | syl 17 |
. . . . . . . . 9
⊢ (𝑑 ∈ Pred(𝑅, 𝐴, 𝑎) → (((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜓) → 𝜓)) |
150 | 149 | ralimia 3084 |
. . . . . . . 8
⊢
(∀𝑑 ∈
Pred (𝑅, 𝐴, 𝑎)((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜓) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓) |
151 | 141, 150 | syl 17 |
. . . . . . 7
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓) |
152 | | ssun2 4103 |
. . . . . . . . . . 11
⊢ {𝑎} ⊆ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) |
153 | | ssralv 3983 |
. . . . . . . . . . 11
⊢ ({𝑎} ⊆ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) → (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
154 | 152, 153 | ax-mp 5 |
. . . . . . . . . 10
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
155 | 56 | ralimi 3086 |
. . . . . . . . . 10
⊢
(∀𝑑 ∈
{𝑎}∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
156 | 154, 155 | syl 17 |
. . . . . . . . 9
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
157 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑎 ∈ V |
158 | | neeq1 3005 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝑎 → (𝑑 ≠ 𝑎 ↔ 𝑎 ≠ 𝑎)) |
159 | | biidd 261 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝑎 → (𝑒 ≠ 𝑏 ↔ 𝑒 ≠ 𝑏)) |
160 | | biidd 261 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝑎 → (𝑓 ≠ 𝑐 ↔ 𝑓 ≠ 𝑐)) |
161 | 158, 159,
160 | 3orbi123d 1433 |
. . . . . . . . . . . 12
⊢ (𝑑 = 𝑎 → ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) ↔ (𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐))) |
162 | | xpord3ind.13 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑑 → (𝜏 ↔ 𝜃)) |
163 | 162 | equcoms 2024 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝑎 → (𝜏 ↔ 𝜃)) |
164 | 163 | bicomd 222 |
. . . . . . . . . . . 12
⊢ (𝑑 = 𝑎 → (𝜃 ↔ 𝜏)) |
165 | 161, 164 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑑 = 𝑎 → (((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏))) |
166 | 165 | 2ralbidv 3122 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑎 → (∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏))) |
167 | 157, 166 | ralsn 4614 |
. . . . . . . . 9
⊢
(∀𝑑 ∈
{𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏)) |
168 | 156, 167 | sylib 217 |
. . . . . . . 8
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏)) |
169 | 62 | 3mix3d 1336 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) → (𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐)) |
170 | | pm2.27 42 |
. . . . . . . . . . 11
⊢ ((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → (((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏) → 𝜏)) |
171 | 169, 170 | syl 17 |
. . . . . . . . . 10
⊢ (𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) → (((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏) → 𝜏)) |
172 | 171 | ralimia 3084 |
. . . . . . . . 9
⊢
(∀𝑓 ∈
Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏) |
173 | 172 | ralimi 3086 |
. . . . . . . 8
⊢
(∀𝑒 ∈
Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏) |
174 | 168, 173 | syl 17 |
. . . . . . 7
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏) |
175 | 73 | ralimi 3086 |
. . . . . . . . . 10
⊢
(∀𝑑 ∈
{𝑎}∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
176 | 154, 175 | syl 17 |
. . . . . . . . 9
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
177 | 165 | 2ralbidv 3122 |
. . . . . . . . . . 11
⊢ (𝑑 = 𝑎 → (∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏))) |
178 | 157, 177 | ralsn 4614 |
. . . . . . . . . 10
⊢
(∀𝑑 ∈
{𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏)) |
179 | | biidd 261 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑐 → (𝑎 ≠ 𝑎 ↔ 𝑎 ≠ 𝑎)) |
180 | 179, 78, 79 | 3orbi123d 1433 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑐 → ((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) ↔ (𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐))) |
181 | | xpord3ind.16 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 𝑓 → (𝜎 ↔ 𝜏)) |
182 | 181 | bicomd 222 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑓 → (𝜏 ↔ 𝜎)) |
183 | 182 | equcoms 2024 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑐 → (𝜏 ↔ 𝜎)) |
184 | 180, 183 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑐 → (((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏) ↔ ((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜎))) |
185 | 76, 184 | ralsn 4614 |
. . . . . . . . . . 11
⊢
(∀𝑓 ∈
{𝑐} ((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏) ↔ ((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜎)) |
186 | 185 | ralbii 3090 |
. . . . . . . . . 10
⊢
(∀𝑒 ∈
Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏) ↔ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜎)) |
187 | 178, 186 | bitri 274 |
. . . . . . . . 9
⊢
(∀𝑑 ∈
{𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜎)) |
188 | 176, 187 | sylib 217 |
. . . . . . . 8
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜎)) |
189 | 92 | 3mix2d 1335 |
. . . . . . . . . 10
⊢ (𝑒 ∈ Pred(𝑆, 𝐵, 𝑏) → (𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐)) |
190 | | pm2.27 42 |
. . . . . . . . . 10
⊢ ((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → (((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜎) → 𝜎)) |
191 | 189, 190 | syl 17 |
. . . . . . . . 9
⊢ (𝑒 ∈ Pred(𝑆, 𝐵, 𝑏) → (((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜎) → 𝜎)) |
192 | 191 | ralimia 3084 |
. . . . . . . 8
⊢
(∀𝑒 ∈
Pred (𝑆, 𝐵, 𝑏)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜎) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) |
193 | 188, 192 | syl 17 |
. . . . . . 7
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) |
194 | 151, 174,
193 | 3jca 1126 |
. . . . . 6
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎)) |
195 | 103 | ralimi 3086 |
. . . . . . . . 9
⊢
(∀𝑑 ∈
{𝑎}∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
196 | 154, 195 | syl 17 |
. . . . . . . 8
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
197 | 165 | 2ralbidv 3122 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑎 → (∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏))) |
198 | 157, 197 | ralsn 4614 |
. . . . . . . . 9
⊢
(∀𝑑 ∈
{𝑎}∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏)) |
199 | | biidd 261 |
. . . . . . . . . . . . 13
⊢ (𝑒 = 𝑏 → (𝑎 ≠ 𝑎 ↔ 𝑎 ≠ 𝑎)) |
200 | 199, 108,
109 | 3orbi123d 1433 |
. . . . . . . . . . . 12
⊢ (𝑒 = 𝑏 → ((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) ↔ (𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐))) |
201 | | xpord3ind.14 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑒 → (𝜂 ↔ 𝜏)) |
202 | 201 | equcoms 2024 |
. . . . . . . . . . . . 13
⊢ (𝑒 = 𝑏 → (𝜂 ↔ 𝜏)) |
203 | 202 | bicomd 222 |
. . . . . . . . . . . 12
⊢ (𝑒 = 𝑏 → (𝜏 ↔ 𝜂)) |
204 | 200, 203 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑒 = 𝑏 → (((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏) ↔ ((𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜂))) |
205 | 204 | ralbidv 3120 |
. . . . . . . . . 10
⊢ (𝑒 = 𝑏 → (∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏) ↔ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜂))) |
206 | 106, 205 | ralsn 4614 |
. . . . . . . . 9
⊢
(∀𝑒 ∈
{𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏) ↔ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜂)) |
207 | 198, 206 | bitri 274 |
. . . . . . . 8
⊢
(∀𝑑 ∈
{𝑎}∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜂)) |
208 | 196, 207 | sylib 217 |
. . . . . . 7
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜂)) |
209 | 62 | 3mix3d 1336 |
. . . . . . . . 9
⊢ (𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) → (𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐)) |
210 | | pm2.27 42 |
. . . . . . . . 9
⊢ ((𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → (((𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜂) → 𝜂)) |
211 | 209, 210 | syl 17 |
. . . . . . . 8
⊢ (𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) → (((𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜂) → 𝜂)) |
212 | 211 | ralimia 3084 |
. . . . . . 7
⊢
(∀𝑓 ∈
Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜂) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) |
213 | 208, 212 | syl 17 |
. . . . . 6
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) |
214 | 126, 194,
213 | 3jca 1126 |
. . . . 5
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂)) |
215 | | xpord3ind.i |
. . . . 5
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑)) |
216 | 214, 215 | syl5 34 |
. . . 4
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) → (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → 𝜑)) |
217 | 45, 216 | sylbid 239 |
. . 3
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) → (∀𝑑∀𝑒∀𝑓(〈〈𝑑, 𝑒〉, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈〈𝑎, 𝑏〉, 𝑐〉) → 𝜃) → 𝜑)) |
218 | | xpord3ind.10 |
. . 3
⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜓)) |
219 | | xpord3ind.17 |
. . 3
⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜌)) |
220 | | xpord3ind.18 |
. . 3
⊢ (𝑏 = 𝑌 → (𝜌 ↔ 𝜇)) |
221 | | xpord3ind.19 |
. . 3
⊢ (𝑐 = 𝑍 → (𝜇 ↔ 𝜆)) |
222 | 217, 218,
134, 81, 219, 220, 221 | frpoins3xp3g 33715 |
. 2
⊢ (((𝑈 Fr ((𝐴 × 𝐵) × 𝐶) ∧ 𝑈 Po ((𝐴 × 𝐵) × 𝐶) ∧ 𝑈 Se ((𝐴 × 𝐵) × 𝐶)) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶)) → 𝜆) |
223 | 26, 222 | mpan 686 |
1
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶) → 𝜆) |