MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxpes Structured version   Visualization version   GIF version

Theorem ralxpes 8162
Description: A version of ralxp 5851 with explicit substitution. (Contributed by Scott Fenton, 21-Aug-2024.)
Assertion
Ref Expression
ralxpes (∀𝑥 ∈ (𝐴 × 𝐵)[(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜑)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐴(𝑧)

Proof of Theorem ralxpes
StepHypRef Expression
1 nfsbc1v 3807 . 2 𝑦[(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑
2 nfcv 2904 . . 3 𝑧(1st𝑥)
3 nfsbc1v 3807 . . 3 𝑧[(2nd𝑥) / 𝑧]𝜑
42, 3nfsbcw 3809 . 2 𝑧[(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑
5 nfv 1913 . 2 𝑥𝜑
6 sbcopeq1a 8075 . 2 (𝑥 = ⟨𝑦, 𝑧⟩ → ([(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑𝜑))
71, 4, 5, 6ralxpf 5856 1 (∀𝑥 ∈ (𝐴 × 𝐵)[(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wral 3060  [wsbc 3787   × cxp 5682  cfv 6560  1st c1st 8013  2nd c2nd 8014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-iota 6513  df-fun 6562  df-fv 6568  df-1st 8015  df-2nd 8016
This theorem is referenced by:  frpoins3xpg  8166
  Copyright terms: Public domain W3C validator