| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralxpes | Structured version Visualization version GIF version | ||
| Description: A version of ralxp 5781 with explicit substitution. (Contributed by Scott Fenton, 21-Aug-2024.) |
| Ref | Expression |
|---|---|
| ralxpes | ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)[(1st ‘𝑥) / 𝑦][(2nd ‘𝑥) / 𝑧]𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsbc1v 3761 | . 2 ⊢ Ⅎ𝑦[(1st ‘𝑥) / 𝑦][(2nd ‘𝑥) / 𝑧]𝜑 | |
| 2 | nfcv 2894 | . . 3 ⊢ Ⅎ𝑧(1st ‘𝑥) | |
| 3 | nfsbc1v 3761 | . . 3 ⊢ Ⅎ𝑧[(2nd ‘𝑥) / 𝑧]𝜑 | |
| 4 | 2, 3 | nfsbcw 3763 | . 2 ⊢ Ⅎ𝑧[(1st ‘𝑥) / 𝑦][(2nd ‘𝑥) / 𝑧]𝜑 |
| 5 | nfv 1915 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 6 | sbcopeq1a 7981 | . 2 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ([(1st ‘𝑥) / 𝑦][(2nd ‘𝑥) / 𝑧]𝜑 ↔ 𝜑)) | |
| 7 | 1, 4, 5, 6 | ralxpf 5786 | 1 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)[(1st ‘𝑥) / 𝑦][(2nd ‘𝑥) / 𝑧]𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wral 3047 [wsbc 3741 × cxp 5614 ‘cfv 6481 1st c1st 7919 2nd c2nd 7920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: frpoins3xpg 8070 |
| Copyright terms: Public domain | W3C validator |