MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxpes Structured version   Visualization version   GIF version

Theorem ralxpes 8066
Description: A version of ralxp 5781 with explicit substitution. (Contributed by Scott Fenton, 21-Aug-2024.)
Assertion
Ref Expression
ralxpes (∀𝑥 ∈ (𝐴 × 𝐵)[(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜑)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐴(𝑧)

Proof of Theorem ralxpes
StepHypRef Expression
1 nfsbc1v 3761 . 2 𝑦[(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑
2 nfcv 2894 . . 3 𝑧(1st𝑥)
3 nfsbc1v 3761 . . 3 𝑧[(2nd𝑥) / 𝑧]𝜑
42, 3nfsbcw 3763 . 2 𝑧[(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑
5 nfv 1915 . 2 𝑥𝜑
6 sbcopeq1a 7981 . 2 (𝑥 = ⟨𝑦, 𝑧⟩ → ([(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑𝜑))
71, 4, 5, 6ralxpf 5786 1 (∀𝑥 ∈ (𝐴 × 𝐵)[(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wral 3047  [wsbc 3741   × cxp 5614  cfv 6481  1st c1st 7919  2nd c2nd 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-1st 7921  df-2nd 7922
This theorem is referenced by:  frpoins3xpg  8070
  Copyright terms: Public domain W3C validator