MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxpes Structured version   Visualization version   GIF version

Theorem ralxpes 8072
Description: A version of ralxp 5785 with explicit substitution. (Contributed by Scott Fenton, 21-Aug-2024.)
Assertion
Ref Expression
ralxpes (∀𝑥 ∈ (𝐴 × 𝐵)[(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜑)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐴(𝑧)

Proof of Theorem ralxpes
StepHypRef Expression
1 nfsbc1v 3757 . 2 𝑦[(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑
2 nfcv 2895 . . 3 𝑧(1st𝑥)
3 nfsbc1v 3757 . . 3 𝑧[(2nd𝑥) / 𝑧]𝜑
42, 3nfsbcw 3759 . 2 𝑧[(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑
5 nfv 1915 . 2 𝑥𝜑
6 sbcopeq1a 7987 . 2 (𝑥 = ⟨𝑦, 𝑧⟩ → ([(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑𝜑))
71, 4, 5, 6ralxpf 5790 1 (∀𝑥 ∈ (𝐴 × 𝐵)[(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wral 3048  [wsbc 3737   × cxp 5617  cfv 6486  1st c1st 7925  2nd c2nd 7926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fv 6494  df-1st 7927  df-2nd 7928
This theorem is referenced by:  frpoins3xpg  8076
  Copyright terms: Public domain W3C validator