MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxpes Structured version   Visualization version   GIF version

Theorem ralxpes 8140
Description: A version of ralxp 5826 with explicit substitution. (Contributed by Scott Fenton, 21-Aug-2024.)
Assertion
Ref Expression
ralxpes (∀𝑥 ∈ (𝐴 × 𝐵)[(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜑)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐴(𝑧)

Proof of Theorem ralxpes
StepHypRef Expression
1 nfsbc1v 3790 . 2 𝑦[(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑
2 nfcv 2899 . . 3 𝑧(1st𝑥)
3 nfsbc1v 3790 . . 3 𝑧[(2nd𝑥) / 𝑧]𝜑
42, 3nfsbcw 3792 . 2 𝑧[(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑
5 nfv 1914 . 2 𝑥𝜑
6 sbcopeq1a 8053 . 2 (𝑥 = ⟨𝑦, 𝑧⟩ → ([(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑𝜑))
71, 4, 5, 6ralxpf 5831 1 (∀𝑥 ∈ (𝐴 × 𝐵)[(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wral 3052  [wsbc 3770   × cxp 5657  cfv 6536  1st c1st 7991  2nd c2nd 7992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fv 6544  df-1st 7993  df-2nd 7994
This theorem is referenced by:  frpoins3xpg  8144
  Copyright terms: Public domain W3C validator