Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ralxpes | Structured version Visualization version GIF version |
Description: A version of ralxp 5747 with explicit substitution. (Contributed by Scott Fenton, 21-Aug-2024.) |
Ref | Expression |
---|---|
ralxpes | ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)[(1st ‘𝑥) / 𝑦][(2nd ‘𝑥) / 𝑧]𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsbc1v 3739 | . 2 ⊢ Ⅎ𝑦[(1st ‘𝑥) / 𝑦][(2nd ‘𝑥) / 𝑧]𝜑 | |
2 | nfcv 2908 | . . 3 ⊢ Ⅎ𝑧(1st ‘𝑥) | |
3 | nfsbc1v 3739 | . . 3 ⊢ Ⅎ𝑧[(2nd ‘𝑥) / 𝑧]𝜑 | |
4 | 2, 3 | nfsbcw 3741 | . 2 ⊢ Ⅎ𝑧[(1st ‘𝑥) / 𝑦][(2nd ‘𝑥) / 𝑧]𝜑 |
5 | nfv 1920 | . 2 ⊢ Ⅎ𝑥𝜑 | |
6 | sbcopeq1a 7876 | . 2 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ([(1st ‘𝑥) / 𝑦][(2nd ‘𝑥) / 𝑧]𝜑 ↔ 𝜑)) | |
7 | 1, 4, 5, 6 | ralxpf 5752 | 1 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)[(1st ‘𝑥) / 𝑦][(2nd ‘𝑥) / 𝑧]𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wral 3065 [wsbc 3719 × cxp 5586 ‘cfv 6430 1st c1st 7815 2nd c2nd 7816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-iota 6388 df-fun 6432 df-fv 6438 df-1st 7817 df-2nd 7818 |
This theorem is referenced by: frpoins3xpg 33766 |
Copyright terms: Public domain | W3C validator |