![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralxpes | Structured version Visualization version GIF version |
Description: A version of ralxp 5841 with explicit substitution. (Contributed by Scott Fenton, 21-Aug-2024.) |
Ref | Expression |
---|---|
ralxpes | ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)[(1st ‘𝑥) / 𝑦][(2nd ‘𝑥) / 𝑧]𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsbc1v 3797 | . 2 ⊢ Ⅎ𝑦[(1st ‘𝑥) / 𝑦][(2nd ‘𝑥) / 𝑧]𝜑 | |
2 | nfcv 2902 | . . 3 ⊢ Ⅎ𝑧(1st ‘𝑥) | |
3 | nfsbc1v 3797 | . . 3 ⊢ Ⅎ𝑧[(2nd ‘𝑥) / 𝑧]𝜑 | |
4 | 2, 3 | nfsbcw 3799 | . 2 ⊢ Ⅎ𝑧[(1st ‘𝑥) / 𝑦][(2nd ‘𝑥) / 𝑧]𝜑 |
5 | nfv 1916 | . 2 ⊢ Ⅎ𝑥𝜑 | |
6 | sbcopeq1a 8039 | . 2 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → ([(1st ‘𝑥) / 𝑦][(2nd ‘𝑥) / 𝑧]𝜑 ↔ 𝜑)) | |
7 | 1, 4, 5, 6 | ralxpf 5846 | 1 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)[(1st ‘𝑥) / 𝑦][(2nd ‘𝑥) / 𝑧]𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wral 3060 [wsbc 3777 × cxp 5674 ‘cfv 6543 1st c1st 7977 2nd c2nd 7978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fv 6551 df-1st 7979 df-2nd 7980 |
This theorem is referenced by: frpoins3xpg 8131 |
Copyright terms: Public domain | W3C validator |