MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxpes Structured version   Visualization version   GIF version

Theorem ralxpes 8116
Description: A version of ralxp 5831 with explicit substitution. (Contributed by Scott Fenton, 21-Aug-2024.)
Assertion
Ref Expression
ralxpes (∀𝑥 ∈ (𝐴 × 𝐵)[(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜑)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐴(𝑧)

Proof of Theorem ralxpes
StepHypRef Expression
1 nfsbc1v 3789 . 2 𝑦[(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑
2 nfcv 2895 . . 3 𝑧(1st𝑥)
3 nfsbc1v 3789 . . 3 𝑧[(2nd𝑥) / 𝑧]𝜑
42, 3nfsbcw 3791 . 2 𝑧[(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑
5 nfv 1909 . 2 𝑥𝜑
6 sbcopeq1a 8028 . 2 (𝑥 = ⟨𝑦, 𝑧⟩ → ([(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑𝜑))
71, 4, 5, 6ralxpf 5836 1 (∀𝑥 ∈ (𝐴 × 𝐵)[(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wral 3053  [wsbc 3769   × cxp 5664  cfv 6533  1st c1st 7966  2nd c2nd 7967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-iota 6485  df-fun 6535  df-fv 6541  df-1st 7968  df-2nd 7969
This theorem is referenced by:  frpoins3xpg  8120
  Copyright terms: Public domain W3C validator