Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ot21std | Structured version Visualization version GIF version |
Description: Extract the first member of an ordered triple. Deduction version. (Contributed by Scott Fenton, 21-Aug-2024.) |
Ref | Expression |
---|---|
ot21st.1 | ⊢ 𝐴 ∈ V |
ot21st.2 | ⊢ 𝐵 ∈ V |
ot21st.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
ot21std | ⊢ (𝑋 = 〈〈𝐴, 𝐵〉, 𝐶〉 → (1st ‘(1st ‘𝑋)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5373 | . . . 4 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
2 | ot21st.3 | . . . 4 ⊢ 𝐶 ∈ V | |
3 | 1, 2 | op1std 7814 | . . 3 ⊢ (𝑋 = 〈〈𝐴, 𝐵〉, 𝐶〉 → (1st ‘𝑋) = 〈𝐴, 𝐵〉) |
4 | 3 | fveq2d 6760 | . 2 ⊢ (𝑋 = 〈〈𝐴, 𝐵〉, 𝐶〉 → (1st ‘(1st ‘𝑋)) = (1st ‘〈𝐴, 𝐵〉)) |
5 | ot21st.1 | . . 3 ⊢ 𝐴 ∈ V | |
6 | ot21st.2 | . . 3 ⊢ 𝐵 ∈ V | |
7 | 5, 6 | op1st 7812 | . 2 ⊢ (1st ‘〈𝐴, 𝐵〉) = 𝐴 |
8 | 4, 7 | eqtrdi 2795 | 1 ⊢ (𝑋 = 〈〈𝐴, 𝐵〉, 𝐶〉 → (1st ‘(1st ‘𝑋)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 ‘cfv 6418 1st c1st 7802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-1st 7804 |
This theorem is referenced by: sbcoteq1a 33590 xpord3lem 33722 |
Copyright terms: Public domain | W3C validator |