Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > otelxp1 | Structured version Visualization version GIF version |
Description: The first member of an ordered triple of classes in a Cartesian product belongs to first Cartesian product argument. (Contributed by NM, 28-May-2008.) |
Ref | Expression |
---|---|
otelxp1 | ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝑅 × 𝑆) × 𝑇) → 𝐴 ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp1 5621 | . 2 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝑅 × 𝑆) × 𝑇) → 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) | |
2 | opelxp1 5621 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆) → 𝐴 ∈ 𝑅) | |
3 | 1, 2 | syl 17 | 1 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝑅 × 𝑆) × 𝑇) → 𝐴 ∈ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 〈cop 4564 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-xp 5586 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |