MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otelxp1 Structured version   Visualization version   GIF version

Theorem otelxp1 5734
Description: The first member of an ordered triple of classes in a Cartesian product belongs to first Cartesian product argument. (Contributed by NM, 28-May-2008.)
Assertion
Ref Expression
otelxp1 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝑅 × 𝑆) × 𝑇) → 𝐴𝑅)

Proof of Theorem otelxp1
StepHypRef Expression
1 opelxp1 5731 . 2 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝑅 × 𝑆) × 𝑇) → ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆))
2 opelxp1 5731 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆) → 𝐴𝑅)
31, 2syl 17 1 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝑅 × 𝑆) × 𝑇) → 𝐴𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cop 4637   × cxp 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-opab 5211  df-xp 5695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator