MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelxp1 Structured version   Visualization version   GIF version

Theorem opelxp1 5661
Description: The first member of an ordered pair of classes in a Cartesian product belongs to first Cartesian product argument. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opelxp1 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → 𝐴𝐶)

Proof of Theorem opelxp1
StepHypRef Expression
1 opelxp 5655 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷))
21simplbi 497 1 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cop 4583   × cxp 5617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-opab 5155  df-xp 5625
This theorem is referenced by:  otelxp1  5664  dff3  7034  ressnop0  7087  swoord1  8657  swoord2  8658  isfin4p1  10209  canthp1lem2  10547  ciclcl  17709  txcmplem1  23526  txlm  23533  dvbsss  25801  nvvcop  30538  nvvop  30553  fldextfld1  33620  prsdm  33887  linedegen  36127  bj-opelresdm  37129  bj-idres  37144  opelopab3  37708  et-ltneverrefl  46862  natglobalincr  46868  fuco1  49316  fuco2  49318  fucoid2  49344  fucocolem2  49349  reldmlan2  49612  reldmran2  49613  lanrcl  49616  ranrcl  49617
  Copyright terms: Public domain W3C validator