| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelxp1 | Structured version Visualization version GIF version | ||
| Description: The first member of an ordered pair of classes in a Cartesian product belongs to first Cartesian product argument. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opelxp1 | ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 5690 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 〈cop 4607 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-opab 5182 df-xp 5660 |
| This theorem is referenced by: otelxp1 5699 dff3 7090 ressnop0 7143 swoord1 8751 swoord2 8752 isfin4p1 10329 canthp1lem2 10667 ciclcl 17815 txcmplem1 23579 txlm 23586 dvbsss 25855 nvvcop 30575 nvvop 30590 fldextfld1 33689 prsdm 33945 linedegen 36161 bj-opelresdm 37163 bj-idres 37178 opelopab3 37742 et-ltneverrefl 46900 natglobalincr 46906 fuco1 49232 fuco2 49234 fucoid2 49260 fucocolem2 49265 reldmlan2 49492 reldmran2 49493 lanrcl 49496 ranrcl 49497 |
| Copyright terms: Public domain | W3C validator |