| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelxp1 | Structured version Visualization version GIF version | ||
| Description: The first member of an ordered pair of classes in a Cartesian product belongs to first Cartesian product argument. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opelxp1 | ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 5677 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 〈cop 4598 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-opab 5173 df-xp 5647 |
| This theorem is referenced by: otelxp1 5686 dff3 7075 ressnop0 7128 swoord1 8706 swoord2 8707 isfin4p1 10275 canthp1lem2 10613 ciclcl 17771 txcmplem1 23535 txlm 23542 dvbsss 25810 nvvcop 30530 nvvop 30545 fldextfld1 33650 prsdm 33911 linedegen 36138 bj-opelresdm 37140 bj-idres 37155 opelopab3 37719 et-ltneverrefl 46876 natglobalincr 46882 fuco1 49314 fuco2 49316 fucoid2 49342 fucocolem2 49347 reldmlan2 49610 reldmran2 49611 lanrcl 49614 ranrcl 49615 |
| Copyright terms: Public domain | W3C validator |