MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelxp1 Structured version   Visualization version   GIF version

Theorem opelxp1 5621
Description: The first member of an ordered pair of classes in a Cartesian product belongs to first Cartesian product argument. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opelxp1 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → 𝐴𝐶)

Proof of Theorem opelxp1
StepHypRef Expression
1 opelxp 5616 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷))
21simplbi 497 1 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cop 4564   × cxp 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-xp 5586
This theorem is referenced by:  otelxp1  5623  dff3  6958  ressnop0  7007  swoord1  8487  swoord2  8488  isfin4p1  10002  canthp1lem2  10340  ciclcl  17431  txcmplem1  22700  txlm  22707  dvbsss  24971  nvvcop  28857  nvvop  28872  fldextfld1  31626  prsdm  31766  linedegen  34372  bj-opelresdm  35243  bj-idres  35258  opelopab3  35802
  Copyright terms: Public domain W3C validator