![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > otel3xp | Structured version Visualization version GIF version |
Description: An ordered triple is an element of a doubled Cartesian product. (Contributed by Alexander van der Vekens, 26-Feb-2018.) |
Ref | Expression |
---|---|
otel3xp | ⊢ ((𝑇 = 〈𝐴, 𝐵, 𝐶〉 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) → 𝑇 ∈ ((𝑋 × 𝑌) × 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 4485 | . . . 4 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
2 | 3simpa 1141 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) | |
3 | opelxp 5484 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑌) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) | |
4 | 2, 3 | sylibr 235 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑌)) |
5 | simp3 1131 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐶 ∈ 𝑍) | |
6 | 4, 5 | opelxpd 5486 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝑋 × 𝑌) × 𝑍)) |
7 | 1, 6 | syl5eqel 2887 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 〈𝐴, 𝐵, 𝐶〉 ∈ ((𝑋 × 𝑌) × 𝑍)) |
8 | eleq1 2870 | . . 3 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → (𝑇 ∈ ((𝑋 × 𝑌) × 𝑍) ↔ 〈𝐴, 𝐵, 𝐶〉 ∈ ((𝑋 × 𝑌) × 𝑍))) | |
9 | 7, 8 | syl5ibr 247 | . 2 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝑇 ∈ ((𝑋 × 𝑌) × 𝑍))) |
10 | 9 | imp 407 | 1 ⊢ ((𝑇 = 〈𝐴, 𝐵, 𝐶〉 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) → 𝑇 ∈ ((𝑋 × 𝑌) × 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 〈cop 4482 〈cotp 4484 × cxp 5446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pr 5226 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-nul 4216 df-if 4386 df-sn 4477 df-pr 4479 df-op 4483 df-ot 4485 df-opab 5029 df-xp 5454 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |