| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > otel3xp | Structured version Visualization version GIF version | ||
| Description: An ordered triple is an element of a doubled Cartesian product. (Contributed by Alexander van der Vekens, 26-Feb-2018.) |
| Ref | Expression |
|---|---|
| otel3xp | ⊢ ((𝑇 = 〈𝐴, 𝐵, 𝐶〉 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) → 𝑇 ∈ ((𝑋 × 𝑌) × 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot 4617 | . . . 4 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
| 2 | 3simpa 1148 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) | |
| 3 | opelxp 5703 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑌) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) | |
| 4 | 2, 3 | sylibr 234 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑌)) |
| 5 | simp3 1138 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐶 ∈ 𝑍) | |
| 6 | 4, 5 | opelxpd 5706 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝑋 × 𝑌) × 𝑍)) |
| 7 | 1, 6 | eqeltrid 2837 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 〈𝐴, 𝐵, 𝐶〉 ∈ ((𝑋 × 𝑌) × 𝑍)) |
| 8 | eleq1 2821 | . . 3 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → (𝑇 ∈ ((𝑋 × 𝑌) × 𝑍) ↔ 〈𝐴, 𝐵, 𝐶〉 ∈ ((𝑋 × 𝑌) × 𝑍))) | |
| 9 | 7, 8 | imbitrrid 246 | . 2 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝑇 ∈ ((𝑋 × 𝑌) × 𝑍))) |
| 10 | 9 | imp 406 | 1 ⊢ ((𝑇 = 〈𝐴, 𝐵, 𝐶〉 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) → 𝑇 ∈ ((𝑋 × 𝑌) × 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 〈cop 4614 〈cotp 4616 × cxp 5665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-ot 4617 df-opab 5188 df-xp 5673 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |