![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > otel3xp | Structured version Visualization version GIF version |
Description: An ordered triple is an element of a doubled Cartesian product. (Contributed by Alexander van der Vekens, 26-Feb-2018.) |
Ref | Expression |
---|---|
otel3xp | ⊢ ((𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) → 𝑇 ∈ ((𝑋 × 𝑌) × 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 4637 | . . . 4 ⊢ ⟨𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ | |
2 | 3simpa 1147 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) | |
3 | opelxp 5712 | . . . . . 6 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) | |
4 | 2, 3 | sylibr 233 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌)) |
5 | simp3 1137 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐶 ∈ 𝑍) | |
6 | 4, 5 | opelxpd 5715 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝑋 × 𝑌) × 𝑍)) |
7 | 1, 6 | eqeltrid 2836 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ⟨𝐴, 𝐵, 𝐶⟩ ∈ ((𝑋 × 𝑌) × 𝑍)) |
8 | eleq1 2820 | . . 3 ⊢ (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → (𝑇 ∈ ((𝑋 × 𝑌) × 𝑍) ↔ ⟨𝐴, 𝐵, 𝐶⟩ ∈ ((𝑋 × 𝑌) × 𝑍))) | |
9 | 7, 8 | imbitrrid 245 | . 2 ⊢ (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝑇 ∈ ((𝑋 × 𝑌) × 𝑍))) |
10 | 9 | imp 406 | 1 ⊢ ((𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) → 𝑇 ∈ ((𝑋 × 𝑌) × 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ⟨cop 4634 ⟨cotp 4636 × cxp 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-ot 4637 df-opab 5211 df-xp 5682 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |