MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otel3xp Structured version   Visualization version   GIF version

Theorem otel3xp 5722
Description: An ordered triple is an element of a doubled Cartesian product. (Contributed by Alexander van der Vekens, 26-Feb-2018.)
Assertion
Ref Expression
otel3xp ((𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ ∧ (𝐴𝑋𝐵𝑌𝐶𝑍)) → 𝑇 ∈ ((𝑋 × 𝑌) × 𝑍))

Proof of Theorem otel3xp
StepHypRef Expression
1 df-ot 4637 . . . 4 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
2 3simpa 1147 . . . . . 6 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (𝐴𝑋𝐵𝑌))
3 opelxp 5712 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌) ↔ (𝐴𝑋𝐵𝑌))
42, 3sylibr 233 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
5 simp3 1137 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶𝑍)
64, 5opelxpd 5715 . . . 4 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝑋 × 𝑌) × 𝑍))
71, 6eqeltrid 2836 . . 3 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ⟨𝐴, 𝐵, 𝐶⟩ ∈ ((𝑋 × 𝑌) × 𝑍))
8 eleq1 2820 . . 3 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → (𝑇 ∈ ((𝑋 × 𝑌) × 𝑍) ↔ ⟨𝐴, 𝐵, 𝐶⟩ ∈ ((𝑋 × 𝑌) × 𝑍)))
97, 8imbitrrid 245 . 2 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝑇 ∈ ((𝑋 × 𝑌) × 𝑍)))
109imp 406 1 ((𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ ∧ (𝐴𝑋𝐵𝑌𝐶𝑍)) → 𝑇 ∈ ((𝑋 × 𝑌) × 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  cop 4634  cotp 4636   × cxp 5674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-ot 4637  df-opab 5211  df-xp 5682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator