MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otel3xp Structured version   Visualization version   GIF version

Theorem otel3xp 5624
Description: An ordered triple is an element of a doubled Cartesian product. (Contributed by Alexander van der Vekens, 26-Feb-2018.)
Assertion
Ref Expression
otel3xp ((𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ ∧ (𝐴𝑋𝐵𝑌𝐶𝑍)) → 𝑇 ∈ ((𝑋 × 𝑌) × 𝑍))

Proof of Theorem otel3xp
StepHypRef Expression
1 df-ot 4567 . . . 4 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
2 3simpa 1146 . . . . . 6 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (𝐴𝑋𝐵𝑌))
3 opelxp 5616 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌) ↔ (𝐴𝑋𝐵𝑌))
42, 3sylibr 233 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
5 simp3 1136 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶𝑍)
64, 5opelxpd 5618 . . . 4 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝑋 × 𝑌) × 𝑍))
71, 6eqeltrid 2843 . . 3 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ⟨𝐴, 𝐵, 𝐶⟩ ∈ ((𝑋 × 𝑌) × 𝑍))
8 eleq1 2826 . . 3 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → (𝑇 ∈ ((𝑋 × 𝑌) × 𝑍) ↔ ⟨𝐴, 𝐵, 𝐶⟩ ∈ ((𝑋 × 𝑌) × 𝑍)))
97, 8syl5ibr 245 . 2 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝑇 ∈ ((𝑋 × 𝑌) × 𝑍)))
109imp 406 1 ((𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ ∧ (𝐴𝑋𝐵𝑌𝐶𝑍)) → 𝑇 ∈ ((𝑋 × 𝑌) × 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cop 4564  cotp 4566   × cxp 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-ot 4567  df-opab 5133  df-xp 5586
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator