| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > otelxp | Structured version Visualization version GIF version | ||
| Description: Ordered triple membership in a triple Cartesian product. (Contributed by Scott Fenton, 31-Jan-2025.) |
| Ref | Expression |
|---|---|
| otelxp | ⊢ (〈𝐴, 𝐵, 𝐶〉 ∈ ((𝐷 × 𝐸) × 𝐹) ↔ (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 5695 | . . 3 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝐷 × 𝐸) × 𝐹) ↔ (〈𝐴, 𝐵〉 ∈ (𝐷 × 𝐸) ∧ 𝐶 ∈ 𝐹)) | |
| 2 | opelxp 5695 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐷 × 𝐸) ↔ (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸)) | |
| 3 | 1, 2 | bianbi 627 | . 2 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝐷 × 𝐸) × 𝐹) ↔ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸) ∧ 𝐶 ∈ 𝐹)) |
| 4 | df-ot 4615 | . . 3 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
| 5 | 4 | eleq1i 2826 | . 2 ⊢ (〈𝐴, 𝐵, 𝐶〉 ∈ ((𝐷 × 𝐸) × 𝐹) ↔ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝐷 × 𝐸) × 𝐹)) |
| 6 | df-3an 1088 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹) ↔ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸) ∧ 𝐶 ∈ 𝐹)) | |
| 7 | 3, 5, 6 | 3bitr4i 303 | 1 ⊢ (〈𝐴, 𝐵, 𝐶〉 ∈ ((𝐷 × 𝐸) × 𝐹) ↔ (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 〈cop 4612 〈cotp 4614 × cxp 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-ot 4615 df-opab 5187 df-xp 5665 |
| This theorem is referenced by: frpoins3xp3g 8145 xpord3lem 8153 xpord3pred 8156 xpord3inddlem 8158 |
| Copyright terms: Public domain | W3C validator |