MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otelxp Structured version   Visualization version   GIF version

Theorem otelxp 5713
Description: Ordered triple membership in a triple Cartesian product. (Contributed by Scott Fenton, 31-Jan-2025.)
Assertion
Ref Expression
otelxp (⟨𝐴, 𝐵, 𝐶⟩ ∈ ((𝐷 × 𝐸) × 𝐹) ↔ (𝐴𝐷𝐵𝐸𝐶𝐹))

Proof of Theorem otelxp
StepHypRef Expression
1 opelxp 5705 . . 3 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝐷 × 𝐸) × 𝐹) ↔ (⟨𝐴, 𝐵⟩ ∈ (𝐷 × 𝐸) ∧ 𝐶𝐹))
2 opelxp 5705 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (𝐷 × 𝐸) ↔ (𝐴𝐷𝐵𝐸))
32anbi1i 623 . . 3 ((⟨𝐴, 𝐵⟩ ∈ (𝐷 × 𝐸) ∧ 𝐶𝐹) ↔ ((𝐴𝐷𝐵𝐸) ∧ 𝐶𝐹))
41, 3bitri 275 . 2 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝐷 × 𝐸) × 𝐹) ↔ ((𝐴𝐷𝐵𝐸) ∧ 𝐶𝐹))
5 df-ot 4632 . . 3 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
65eleq1i 2818 . 2 (⟨𝐴, 𝐵, 𝐶⟩ ∈ ((𝐷 × 𝐸) × 𝐹) ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝐷 × 𝐸) × 𝐹))
7 df-3an 1086 . 2 ((𝐴𝐷𝐵𝐸𝐶𝐹) ↔ ((𝐴𝐷𝐵𝐸) ∧ 𝐶𝐹))
84, 6, 73bitr4i 303 1 (⟨𝐴, 𝐵, 𝐶⟩ ∈ ((𝐷 × 𝐸) × 𝐹) ↔ (𝐴𝐷𝐵𝐸𝐶𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1084  wcel 2098  cop 4629  cotp 4631   × cxp 5667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-ot 4632  df-opab 5204  df-xp 5675
This theorem is referenced by:  frpoins3xp3g  8124  xpord3lem  8132  xpord3pred  8135  xpord3inddlem  8137
  Copyright terms: Public domain W3C validator