![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > otelxp | Structured version Visualization version GIF version |
Description: Ordered triple membership in a triple Cartesian product. (Contributed by Scott Fenton, 31-Jan-2025.) |
Ref | Expression |
---|---|
otelxp | ⊢ (〈𝐴, 𝐵, 𝐶〉 ∈ ((𝐷 × 𝐸) × 𝐹) ↔ (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 5725 | . . 3 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝐷 × 𝐸) × 𝐹) ↔ (〈𝐴, 𝐵〉 ∈ (𝐷 × 𝐸) ∧ 𝐶 ∈ 𝐹)) | |
2 | opelxp 5725 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐷 × 𝐸) ↔ (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸)) | |
3 | 1, 2 | bianbi 627 | . 2 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝐷 × 𝐸) × 𝐹) ↔ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸) ∧ 𝐶 ∈ 𝐹)) |
4 | df-ot 4640 | . . 3 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
5 | 4 | eleq1i 2830 | . 2 ⊢ (〈𝐴, 𝐵, 𝐶〉 ∈ ((𝐷 × 𝐸) × 𝐹) ↔ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝐷 × 𝐸) × 𝐹)) |
6 | df-3an 1088 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹) ↔ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸) ∧ 𝐶 ∈ 𝐹)) | |
7 | 3, 5, 6 | 3bitr4i 303 | 1 ⊢ (〈𝐴, 𝐵, 𝐶〉 ∈ ((𝐷 × 𝐸) × 𝐹) ↔ (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2106 〈cop 4637 〈cotp 4639 × cxp 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-ot 4640 df-opab 5211 df-xp 5695 |
This theorem is referenced by: frpoins3xp3g 8165 xpord3lem 8173 xpord3pred 8176 xpord3inddlem 8178 |
Copyright terms: Public domain | W3C validator |