![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > otelxp | Structured version Visualization version GIF version |
Description: Ordered triple membership in a triple Cartesian product. (Contributed by Scott Fenton, 31-Jan-2025.) |
Ref | Expression |
---|---|
otelxp | ⊢ (〈𝐴, 𝐵, 𝐶〉 ∈ ((𝐷 × 𝐸) × 𝐹) ↔ (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 5710 | . . 3 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝐷 × 𝐸) × 𝐹) ↔ (〈𝐴, 𝐵〉 ∈ (𝐷 × 𝐸) ∧ 𝐶 ∈ 𝐹)) | |
2 | opelxp 5710 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐷 × 𝐸) ↔ (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸)) | |
3 | 1, 2 | bianbi 625 | . 2 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝐷 × 𝐸) × 𝐹) ↔ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸) ∧ 𝐶 ∈ 𝐹)) |
4 | df-ot 4632 | . . 3 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
5 | 4 | eleq1i 2817 | . 2 ⊢ (〈𝐴, 𝐵, 𝐶〉 ∈ ((𝐷 × 𝐸) × 𝐹) ↔ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝐷 × 𝐸) × 𝐹)) |
6 | df-3an 1086 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹) ↔ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸) ∧ 𝐶 ∈ 𝐹)) | |
7 | 3, 5, 6 | 3bitr4i 302 | 1 ⊢ (〈𝐴, 𝐵, 𝐶〉 ∈ ((𝐷 × 𝐸) × 𝐹) ↔ (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∧ w3a 1084 ∈ wcel 2099 〈cop 4629 〈cotp 4631 × cxp 5672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-ot 4632 df-opab 5208 df-xp 5680 |
This theorem is referenced by: frpoins3xp3g 8147 xpord3lem 8155 xpord3pred 8158 xpord3inddlem 8160 |
Copyright terms: Public domain | W3C validator |