![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > otelxp | Structured version Visualization version GIF version |
Description: Ordered triple membership in a triple Cartesian product. (Contributed by Scott Fenton, 31-Jan-2025.) |
Ref | Expression |
---|---|
otelxp | ⊢ (⟨𝐴, 𝐵, 𝐶⟩ ∈ ((𝐷 × 𝐸) × 𝐹) ↔ (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 5711 | . . 3 ⊢ (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝐷 × 𝐸) × 𝐹) ↔ (⟨𝐴, 𝐵⟩ ∈ (𝐷 × 𝐸) ∧ 𝐶 ∈ 𝐹)) | |
2 | opelxp 5711 | . . . 4 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝐷 × 𝐸) ↔ (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸)) | |
3 | 2 | anbi1i 624 | . . 3 ⊢ ((⟨𝐴, 𝐵⟩ ∈ (𝐷 × 𝐸) ∧ 𝐶 ∈ 𝐹) ↔ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸) ∧ 𝐶 ∈ 𝐹)) |
4 | 1, 3 | bitri 274 | . 2 ⊢ (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝐷 × 𝐸) × 𝐹) ↔ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸) ∧ 𝐶 ∈ 𝐹)) |
5 | df-ot 4636 | . . 3 ⊢ ⟨𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ | |
6 | 5 | eleq1i 2824 | . 2 ⊢ (⟨𝐴, 𝐵, 𝐶⟩ ∈ ((𝐷 × 𝐸) × 𝐹) ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝐷 × 𝐸) × 𝐹)) |
7 | df-3an 1089 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹) ↔ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸) ∧ 𝐶 ∈ 𝐹)) | |
8 | 4, 6, 7 | 3bitr4i 302 | 1 ⊢ (⟨𝐴, 𝐵, 𝐶⟩ ∈ ((𝐷 × 𝐸) × 𝐹) ↔ (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 ⟨cop 4633 ⟨cotp 4635 × cxp 5673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-ot 4636 df-opab 5210 df-xp 5681 |
This theorem is referenced by: frpoins3xp3g 8123 xpord3lem 8131 xpord3pred 8134 xpord3inddlem 8136 |
Copyright terms: Public domain | W3C validator |