| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > otth2 | Structured version Visualization version GIF version | ||
| Description: Ordered triple theorem, with triple expressed with ordered pairs. (Contributed by NM, 1-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| otth.1 | ⊢ 𝐴 ∈ V |
| otth.2 | ⊢ 𝐵 ∈ V |
| otth.3 | ⊢ 𝑅 ∈ V |
| Ref | Expression |
|---|---|
| otth2 | ⊢ (〈〈𝐴, 𝐵〉, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑆〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | otth.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | otth.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | opth 5414 | . . 3 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| 4 | 3 | anbi1i 624 | . 2 ⊢ ((〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ∧ 𝑅 = 𝑆) ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∧ 𝑅 = 𝑆)) |
| 5 | opex 5402 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 6 | otth.3 | . . 3 ⊢ 𝑅 ∈ V | |
| 7 | 5, 6 | opth 5414 | . 2 ⊢ (〈〈𝐴, 𝐵〉, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑆〉 ↔ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ∧ 𝑅 = 𝑆)) |
| 8 | df-3an 1088 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆) ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∧ 𝑅 = 𝑆)) | |
| 9 | 4, 7, 8 | 3bitr4i 303 | 1 ⊢ (〈〈𝐴, 𝐵〉, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑆〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 |
| This theorem is referenced by: otth 5422 oprabidw 7377 oprabid 7378 eloprabga 7455 |
| Copyright terms: Public domain | W3C validator |