![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > otth2 | Structured version Visualization version GIF version |
Description: Ordered triple theorem, with triple expressed with ordered pairs. (Contributed by NM, 1-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
otth.1 | ⊢ 𝐴 ∈ V |
otth.2 | ⊢ 𝐵 ∈ V |
otth.3 | ⊢ 𝑅 ∈ V |
Ref | Expression |
---|---|
otth2 | ⊢ (〈〈𝐴, 𝐵〉, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑆〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | otth.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | otth.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | opth 5496 | . . 3 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
4 | 3 | anbi1i 623 | . 2 ⊢ ((〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ∧ 𝑅 = 𝑆) ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∧ 𝑅 = 𝑆)) |
5 | opex 5484 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
6 | otth.3 | . . 3 ⊢ 𝑅 ∈ V | |
7 | 5, 6 | opth 5496 | . 2 ⊢ (〈〈𝐴, 𝐵〉, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑆〉 ↔ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ∧ 𝑅 = 𝑆)) |
8 | df-3an 1089 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆) ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∧ 𝑅 = 𝑆)) | |
9 | 4, 7, 8 | 3bitr4i 303 | 1 ⊢ (〈〈𝐴, 𝐵〉, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑆〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 |
This theorem is referenced by: otth 5504 oprabidw 7479 oprabid 7480 eloprabga 7558 eloprabgaOLD 7559 |
Copyright terms: Public domain | W3C validator |