![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > otth2 | Structured version Visualization version GIF version |
Description: Ordered triple theorem, with triple expressed with ordered pairs. (Contributed by NM, 1-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
otth.1 | ⊢ 𝐴 ∈ V |
otth.2 | ⊢ 𝐵 ∈ V |
otth.3 | ⊢ 𝑅 ∈ V |
Ref | Expression |
---|---|
otth2 | ⊢ (⟨⟨𝐴, 𝐵⟩, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆⟩ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | otth.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | otth.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | opth 5476 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
4 | 3 | anbi1i 623 | . 2 ⊢ ((⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ∧ 𝑅 = 𝑆) ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∧ 𝑅 = 𝑆)) |
5 | opex 5464 | . . 3 ⊢ ⟨𝐴, 𝐵⟩ ∈ V | |
6 | otth.3 | . . 3 ⊢ 𝑅 ∈ V | |
7 | 5, 6 | opth 5476 | . 2 ⊢ (⟨⟨𝐴, 𝐵⟩, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆⟩ ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ∧ 𝑅 = 𝑆)) |
8 | df-3an 1088 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆) ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∧ 𝑅 = 𝑆)) | |
9 | 4, 7, 8 | 3bitr4i 303 | 1 ⊢ (⟨⟨𝐴, 𝐵⟩, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆⟩ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ⟨cop 4634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 |
This theorem is referenced by: otth 5484 oprabidw 7443 oprabid 7444 eloprabga 7519 eloprabgaOLD 7520 |
Copyright terms: Public domain | W3C validator |