MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otth2 Structured version   Visualization version   GIF version

Theorem otth2 5458
Description: Ordered triple theorem, with triple expressed with ordered pairs. (Contributed by NM, 1-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
otth.1 𝐴 ∈ V
otth.2 𝐵 ∈ V
otth.3 𝑅 ∈ V
Assertion
Ref Expression
otth2 (⟨⟨𝐴, 𝐵⟩, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷𝑅 = 𝑆))

Proof of Theorem otth2
StepHypRef Expression
1 otth.1 . . . 4 𝐴 ∈ V
2 otth.2 . . . 4 𝐵 ∈ V
31, 2opth 5451 . . 3 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷))
43anbi1i 624 . 2 ((⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ∧ 𝑅 = 𝑆) ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∧ 𝑅 = 𝑆))
5 opex 5439 . . 3 𝐴, 𝐵⟩ ∈ V
6 otth.3 . . 3 𝑅 ∈ V
75, 6opth 5451 . 2 (⟨⟨𝐴, 𝐵⟩, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆⟩ ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ∧ 𝑅 = 𝑆))
8 df-3an 1088 . 2 ((𝐴 = 𝐶𝐵 = 𝐷𝑅 = 𝑆) ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∧ 𝑅 = 𝑆))
94, 7, 83bitr4i 303 1 (⟨⟨𝐴, 𝐵⟩, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷𝑅 = 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  cop 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608
This theorem is referenced by:  otth  5459  oprabidw  7436  oprabid  7437  eloprabga  7516
  Copyright terms: Public domain W3C validator