| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opthne | Structured version Visualization version GIF version | ||
| Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.) |
| Ref | Expression |
|---|---|
| opthne.1 | ⊢ 𝐴 ∈ V |
| opthne.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opthne | ⊢ (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opthne.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opthne.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opthneg 5441 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 〈cop 4595 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 |
| This theorem is referenced by: xpord2lem 8121 xpord2pred 8124 xpord2indlem 8126 m2detleib 22518 addsqnreup 27354 mulsval 28012 gpgedg2ov 48054 gpgedg2iv 48055 gpg5nbgrvtx03starlem1 48056 gpg5nbgrvtx03starlem2 48057 gpg5nbgrvtx03starlem3 48058 gpg5nbgrvtx13starlem1 48059 gpg5nbgrvtx13starlem2 48060 gpg5nbgrvtx13starlem3 48061 gpg3nbgrvtx0 48064 gpg3nbgrvtx0ALT 48065 gpg3nbgrvtx1 48066 gpg3kgrtriex 48077 gpgprismgr4cycllem2 48083 gpgprismgr4cycllem7 48088 zlmodzxzldeplem 48484 line2x 48740 inlinecirc02plem 48772 |
| Copyright terms: Public domain | W3C validator |