| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opthne | Structured version Visualization version GIF version | ||
| Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.) |
| Ref | Expression |
|---|---|
| opthne.1 | ⊢ 𝐴 ∈ V |
| opthne.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opthne | ⊢ (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opthne.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opthne.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opthneg 5426 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 〈cop 4583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 |
| This theorem is referenced by: xpord2lem 8081 xpord2pred 8084 xpord2indlem 8086 m2detleib 22566 addsqnreup 27401 mulsval 28068 gpgedg2ov 48228 gpgedg2iv 48229 gpg5nbgrvtx03starlem1 48230 gpg5nbgrvtx03starlem2 48231 gpg5nbgrvtx03starlem3 48232 gpg5nbgrvtx13starlem1 48233 gpg5nbgrvtx13starlem2 48234 gpg5nbgrvtx13starlem3 48235 gpg3nbgrvtx0 48238 gpg3nbgrvtx0ALT 48239 gpg3nbgrvtx1 48240 gpg3kgrtriex 48251 gpgprismgr4cycllem2 48258 gpgprismgr4cycllem7 48263 gpg5edgnedg 48292 zlmodzxzldeplem 48660 line2x 48916 inlinecirc02plem 48948 |
| Copyright terms: Public domain | W3C validator |