MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opthne Structured version   Visualization version   GIF version

Theorem opthne 5493
Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.)
Hypotheses
Ref Expression
opthne.1 𝐴 ∈ V
opthne.2 𝐵 ∈ V
Assertion
Ref Expression
opthne (⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩ ↔ (𝐴𝐶𝐵𝐷))

Proof of Theorem opthne
StepHypRef Expression
1 opthne.1 . 2 𝐴 ∈ V
2 opthne.2 . 2 𝐵 ∈ V
3 opthneg 5492 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩ ↔ (𝐴𝐶𝐵𝐷)))
41, 2, 3mp2an 692 1 (⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩ ↔ (𝐴𝐶𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847  wcel 2106  wne 2938  Vcvv 3478  cop 4637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638
This theorem is referenced by:  xpord2lem  8166  xpord2pred  8169  xpord2indlem  8171  m2detleib  22653  addsqnreup  27502  mulsval  28150  gpg5nbgrvtx03starlem1  47959  gpg5nbgrvtx03starlem2  47960  gpg5nbgrvtx03starlem3  47961  gpg5nbgrvtx13starlem1  47962  gpg5nbgrvtx13starlem2  47963  gpg5nbgrvtx13starlem3  47964  gpg3nbgrvtx0  47967  gpg3nbgrvtx0ALT  47968  gpg3nbgrvtx1  47969  zlmodzxzldeplem  48344  line2x  48604  inlinecirc02plem  48636
  Copyright terms: Public domain W3C validator