![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opthne | Structured version Visualization version GIF version |
Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.) |
Ref | Expression |
---|---|
opthne.1 | ⊢ 𝐴 ∈ V |
opthne.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opthne | ⊢ (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthne.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opthne.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | opthneg 5492 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷))) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 847 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 〈cop 4637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 |
This theorem is referenced by: xpord2lem 8166 xpord2pred 8169 xpord2indlem 8171 m2detleib 22653 addsqnreup 27502 mulsval 28150 gpg5nbgrvtx03starlem1 47959 gpg5nbgrvtx03starlem2 47960 gpg5nbgrvtx03starlem3 47961 gpg5nbgrvtx13starlem1 47962 gpg5nbgrvtx13starlem2 47963 gpg5nbgrvtx13starlem3 47964 gpg3nbgrvtx0 47967 gpg3nbgrvtx0ALT 47968 gpg3nbgrvtx1 47969 zlmodzxzldeplem 48344 line2x 48604 inlinecirc02plem 48636 |
Copyright terms: Public domain | W3C validator |