MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opthne Structured version   Visualization version   GIF version

Theorem opthne 5462
Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.)
Hypotheses
Ref Expression
opthne.1 𝐴 ∈ V
opthne.2 𝐵 ∈ V
Assertion
Ref Expression
opthne (⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩ ↔ (𝐴𝐶𝐵𝐷))

Proof of Theorem opthne
StepHypRef Expression
1 opthne.1 . 2 𝐴 ∈ V
2 opthne.2 . 2 𝐵 ∈ V
3 opthneg 5461 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩ ↔ (𝐴𝐶𝐵𝐷)))
41, 2, 3mp2an 692 1 (⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩ ↔ (𝐴𝐶𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847  wcel 2109  wne 2933  Vcvv 3464  cop 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613
This theorem is referenced by:  xpord2lem  8146  xpord2pred  8149  xpord2indlem  8151  m2detleib  22574  addsqnreup  27411  mulsval  28069  gpg5nbgrvtx03starlem1  48037  gpg5nbgrvtx03starlem2  48038  gpg5nbgrvtx03starlem3  48039  gpg5nbgrvtx13starlem1  48040  gpg5nbgrvtx13starlem2  48041  gpg5nbgrvtx13starlem3  48042  gpg3nbgrvtx0  48045  gpg3nbgrvtx0ALT  48046  gpg3nbgrvtx1  48047  gpg3kgrtriex  48058  gpgprismgr4cycllem2  48062  gpgprismgr4cycllem7  48067  zlmodzxzldeplem  48441  line2x  48701  inlinecirc02plem  48733
  Copyright terms: Public domain W3C validator