Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opthne | Structured version Visualization version GIF version |
Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.) |
Ref | Expression |
---|---|
opthne.1 | ⊢ 𝐴 ∈ V |
opthne.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opthne | ⊢ (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthne.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opthne.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | opthneg 5390 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷))) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 〈cop 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 |
This theorem is referenced by: m2detleib 21688 addsqnreup 26496 otthne 33585 xpord2lem 33716 xpord2pred 33719 xpord2ind 33721 zlmodzxzldeplem 45727 line2x 45988 inlinecirc02plem 46020 |
Copyright terms: Public domain | W3C validator |