| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opthne | Structured version Visualization version GIF version | ||
| Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.) |
| Ref | Expression |
|---|---|
| opthne.1 | ⊢ 𝐴 ∈ V |
| opthne.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opthne | ⊢ (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opthne.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opthne.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opthneg 5461 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∈ wcel 2109 ≠ wne 2933 Vcvv 3464 〈cop 4612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 |
| This theorem is referenced by: xpord2lem 8146 xpord2pred 8149 xpord2indlem 8151 m2detleib 22574 addsqnreup 27411 mulsval 28069 gpg5nbgrvtx03starlem1 48037 gpg5nbgrvtx03starlem2 48038 gpg5nbgrvtx03starlem3 48039 gpg5nbgrvtx13starlem1 48040 gpg5nbgrvtx13starlem2 48041 gpg5nbgrvtx13starlem3 48042 gpg3nbgrvtx0 48045 gpg3nbgrvtx0ALT 48046 gpg3nbgrvtx1 48047 gpg3kgrtriex 48058 gpgprismgr4cycllem2 48062 gpgprismgr4cycllem7 48067 zlmodzxzldeplem 48441 line2x 48701 inlinecirc02plem 48733 |
| Copyright terms: Public domain | W3C validator |