MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opthne Structured version   Visualization version   GIF version

Theorem opthne 5427
Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.)
Hypotheses
Ref Expression
opthne.1 𝐴 ∈ V
opthne.2 𝐵 ∈ V
Assertion
Ref Expression
opthne (⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩ ↔ (𝐴𝐶𝐵𝐷))

Proof of Theorem opthne
StepHypRef Expression
1 opthne.1 . 2 𝐴 ∈ V
2 opthne.2 . 2 𝐵 ∈ V
3 opthneg 5426 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩ ↔ (𝐴𝐶𝐵𝐷)))
41, 2, 3mp2an 692 1 (⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩ ↔ (𝐴𝐶𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847  wcel 2113  wne 2929  Vcvv 3437  cop 4583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584
This theorem is referenced by:  xpord2lem  8081  xpord2pred  8084  xpord2indlem  8086  m2detleib  22566  addsqnreup  27401  mulsval  28068  gpgedg2ov  48228  gpgedg2iv  48229  gpg5nbgrvtx03starlem1  48230  gpg5nbgrvtx03starlem2  48231  gpg5nbgrvtx03starlem3  48232  gpg5nbgrvtx13starlem1  48233  gpg5nbgrvtx13starlem2  48234  gpg5nbgrvtx13starlem3  48235  gpg3nbgrvtx0  48238  gpg3nbgrvtx0ALT  48239  gpg3nbgrvtx1  48240  gpg3kgrtriex  48251  gpgprismgr4cycllem2  48258  gpgprismgr4cycllem7  48263  gpg5edgnedg  48292  zlmodzxzldeplem  48660  line2x  48916  inlinecirc02plem  48948
  Copyright terms: Public domain W3C validator