| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opthne | Structured version Visualization version GIF version | ||
| Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.) |
| Ref | Expression |
|---|---|
| opthne.1 | ⊢ 𝐴 ∈ V |
| opthne.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opthne | ⊢ (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opthne.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opthne.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opthneg 5485 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∈ wcel 2107 ≠ wne 2939 Vcvv 3479 〈cop 4631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 |
| This theorem is referenced by: xpord2lem 8168 xpord2pred 8171 xpord2indlem 8173 m2detleib 22638 addsqnreup 27488 mulsval 28136 gpg5nbgrvtx03starlem1 48029 gpg5nbgrvtx03starlem2 48030 gpg5nbgrvtx03starlem3 48031 gpg5nbgrvtx13starlem1 48032 gpg5nbgrvtx13starlem2 48033 gpg5nbgrvtx13starlem3 48034 gpg3nbgrvtx0 48037 gpg3nbgrvtx0ALT 48038 gpg3nbgrvtx1 48039 gpg3kgrtriex 48050 zlmodzxzldeplem 48420 line2x 48680 inlinecirc02plem 48712 |
| Copyright terms: Public domain | W3C validator |