| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opthne | Structured version Visualization version GIF version | ||
| Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.) |
| Ref | Expression |
|---|---|
| opthne.1 | ⊢ 𝐴 ∈ V |
| opthne.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opthne | ⊢ (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opthne.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opthne.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opthneg 5416 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 〈cop 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 |
| This theorem is referenced by: xpord2lem 8067 xpord2pred 8070 xpord2indlem 8072 m2detleib 22541 addsqnreup 27376 mulsval 28043 gpgedg2ov 48097 gpgedg2iv 48098 gpg5nbgrvtx03starlem1 48099 gpg5nbgrvtx03starlem2 48100 gpg5nbgrvtx03starlem3 48101 gpg5nbgrvtx13starlem1 48102 gpg5nbgrvtx13starlem2 48103 gpg5nbgrvtx13starlem3 48104 gpg3nbgrvtx0 48107 gpg3nbgrvtx0ALT 48108 gpg3nbgrvtx1 48109 gpg3kgrtriex 48120 gpgprismgr4cycllem2 48127 gpgprismgr4cycllem7 48132 gpg5edgnedg 48161 zlmodzxzldeplem 48530 line2x 48786 inlinecirc02plem 48818 |
| Copyright terms: Public domain | W3C validator |