MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otth Structured version   Visualization version   GIF version

Theorem otth 5459
Description: Ordered triple theorem. (Contributed by NM, 25-Sep-2014.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
otth.1 𝐴 ∈ V
otth.2 𝐵 ∈ V
otth.3 𝑅 ∈ V
Assertion
Ref Expression
otth (⟨𝐴, 𝐵, 𝑅⟩ = ⟨𝐶, 𝐷, 𝑆⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷𝑅 = 𝑆))

Proof of Theorem otth
StepHypRef Expression
1 df-ot 4610 . . 3 𝐴, 𝐵, 𝑅⟩ = ⟨⟨𝐴, 𝐵⟩, 𝑅
2 df-ot 4610 . . 3 𝐶, 𝐷, 𝑆⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆
31, 2eqeq12i 2753 . 2 (⟨𝐴, 𝐵, 𝑅⟩ = ⟨𝐶, 𝐷, 𝑆⟩ ↔ ⟨⟨𝐴, 𝐵⟩, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆⟩)
4 otth.1 . . 3 𝐴 ∈ V
5 otth.2 . . 3 𝐵 ∈ V
6 otth.3 . . 3 𝑅 ∈ V
74, 5, 6otth2 5458 . 2 (⟨⟨𝐴, 𝐵⟩, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷𝑅 = 𝑆))
83, 7bitri 275 1 (⟨𝐴, 𝐵, 𝑅⟩ = ⟨𝐶, 𝐷, 𝑆⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷𝑅 = 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  cop 4607  cotp 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-ot 4610
This theorem is referenced by:  otthne  5461  euotd  5488  mthmpps  35604  ackval40  48673  arweuthinc  49414  arweutermc  49415
  Copyright terms: Public domain W3C validator