![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > otth | Structured version Visualization version GIF version |
Description: Ordered triple theorem. (Contributed by NM, 25-Sep-2014.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
otth.1 | ⊢ 𝐴 ∈ V |
otth.2 | ⊢ 𝐵 ∈ V |
otth.3 | ⊢ 𝑅 ∈ V |
Ref | Expression |
---|---|
otth | ⊢ (⟨𝐴, 𝐵, 𝑅⟩ = ⟨𝐶, 𝐷, 𝑆⟩ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 4630 | . . 3 ⊢ ⟨𝐴, 𝐵, 𝑅⟩ = ⟨⟨𝐴, 𝐵⟩, 𝑅⟩ | |
2 | df-ot 4630 | . . 3 ⊢ ⟨𝐶, 𝐷, 𝑆⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆⟩ | |
3 | 1, 2 | eqeq12i 2742 | . 2 ⊢ (⟨𝐴, 𝐵, 𝑅⟩ = ⟨𝐶, 𝐷, 𝑆⟩ ↔ ⟨⟨𝐴, 𝐵⟩, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆⟩) |
4 | otth.1 | . . 3 ⊢ 𝐴 ∈ V | |
5 | otth.2 | . . 3 ⊢ 𝐵 ∈ V | |
6 | otth.3 | . . 3 ⊢ 𝑅 ∈ V | |
7 | 4, 5, 6 | otth2 5474 | . 2 ⊢ (⟨⟨𝐴, 𝐵⟩, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆⟩ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) |
8 | 3, 7 | bitri 275 | 1 ⊢ (⟨𝐴, 𝐵, 𝑅⟩ = ⟨𝐶, 𝐷, 𝑆⟩ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ⟨cop 4627 ⟨cotp 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-ot 4630 |
This theorem is referenced by: otthne 5477 euotd 5504 mthmpps 35064 ackval40 47592 |
Copyright terms: Public domain | W3C validator |