| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > otth | Structured version Visualization version GIF version | ||
| Description: Ordered triple theorem. (Contributed by NM, 25-Sep-2014.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| otth.1 | ⊢ 𝐴 ∈ V |
| otth.2 | ⊢ 𝐵 ∈ V |
| otth.3 | ⊢ 𝑅 ∈ V |
| Ref | Expression |
|---|---|
| otth | ⊢ (〈𝐴, 𝐵, 𝑅〉 = 〈𝐶, 𝐷, 𝑆〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot 4610 | . . 3 ⊢ 〈𝐴, 𝐵, 𝑅〉 = 〈〈𝐴, 𝐵〉, 𝑅〉 | |
| 2 | df-ot 4610 | . . 3 ⊢ 〈𝐶, 𝐷, 𝑆〉 = 〈〈𝐶, 𝐷〉, 𝑆〉 | |
| 3 | 1, 2 | eqeq12i 2753 | . 2 ⊢ (〈𝐴, 𝐵, 𝑅〉 = 〈𝐶, 𝐷, 𝑆〉 ↔ 〈〈𝐴, 𝐵〉, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑆〉) |
| 4 | otth.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 5 | otth.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 6 | otth.3 | . . 3 ⊢ 𝑅 ∈ V | |
| 7 | 4, 5, 6 | otth2 5458 | . 2 ⊢ (〈〈𝐴, 𝐵〉, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑆〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) |
| 8 | 3, 7 | bitri 275 | 1 ⊢ (〈𝐴, 𝐵, 𝑅〉 = 〈𝐶, 𝐷, 𝑆〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 Vcvv 3459 〈cop 4607 〈cotp 4609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-ot 4610 |
| This theorem is referenced by: otthne 5461 euotd 5488 mthmpps 35604 ackval40 48673 arweuthinc 49414 arweutermc 49415 |
| Copyright terms: Public domain | W3C validator |