| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > perflp | Structured version Visualization version GIF version | ||
| Description: The limit points of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| perflp | ⊢ (𝐽 ∈ Perf → ((limPt‘𝐽)‘𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | isperf 23105 | . 2 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋)) |
| 3 | 2 | simprbi 496 | 1 ⊢ (𝐽 ∈ Perf → ((limPt‘𝐽)‘𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∪ cuni 4887 ‘cfv 6541 Topctop 22847 limPtclp 23088 Perfcperf 23089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-perf 23091 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |