MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perflp Structured version   Visualization version   GIF version

Theorem perflp 23009
Description: The limit points of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
perflp (𝐽 ∈ Perf β†’ ((limPtβ€˜π½)β€˜π‘‹) = 𝑋)

Proof of Theorem perflp
StepHypRef Expression
1 lpfval.1 . . 3 𝑋 = βˆͺ 𝐽
21isperf 23006 . 2 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPtβ€˜π½)β€˜π‘‹) = 𝑋))
32simprbi 496 1 (𝐽 ∈ Perf β†’ ((limPtβ€˜π½)β€˜π‘‹) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  βˆͺ cuni 4902  β€˜cfv 6536  Topctop 22746  limPtclp 22989  Perfcperf 22990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-iota 6488  df-fv 6544  df-perf 22992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator