![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > perflp | Structured version Visualization version GIF version |
Description: The limit points of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
lpfval.1 | β’ π = βͺ π½ |
Ref | Expression |
---|---|
perflp | β’ (π½ β Perf β ((limPtβπ½)βπ) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpfval.1 | . . 3 β’ π = βͺ π½ | |
2 | 1 | isperf 22655 | . 2 β’ (π½ β Perf β (π½ β Top β§ ((limPtβπ½)βπ) = π)) |
3 | 2 | simprbi 498 | 1 β’ (π½ β Perf β ((limPtβπ½)βπ) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 βͺ cuni 4909 βcfv 6544 Topctop 22395 limPtclp 22638 Perfcperf 22639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-perf 22641 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |