MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perflp Structured version   Visualization version   GIF version

Theorem perflp 22658
Description: The limit points of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
perflp (𝐽 ∈ Perf β†’ ((limPtβ€˜π½)β€˜π‘‹) = 𝑋)

Proof of Theorem perflp
StepHypRef Expression
1 lpfval.1 . . 3 𝑋 = βˆͺ 𝐽
21isperf 22655 . 2 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPtβ€˜π½)β€˜π‘‹) = 𝑋))
32simprbi 498 1 (𝐽 ∈ Perf β†’ ((limPtβ€˜π½)β€˜π‘‹) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  βˆͺ cuni 4909  β€˜cfv 6544  Topctop 22395  limPtclp 22638  Perfcperf 22639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-perf 22641
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator