MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isperf3 Structured version   Visualization version   GIF version

Theorem isperf3 23046
Description: A perfect space is a topology which has no open singletons. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
isperf3 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋

Proof of Theorem isperf3
StepHypRef Expression
1 lpfval.1 . . 3 𝑋 = 𝐽
21isperf2 23045 . 2 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))
3 dfss3 3937 . . . 4 (𝑋 ⊆ ((limPt‘𝐽)‘𝑋) ↔ ∀𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝑋))
41maxlp 23040 . . . . . 6 (𝐽 ∈ Top → (𝑥 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑥𝑋 ∧ ¬ {𝑥} ∈ 𝐽)))
54baibd 539 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑋) ↔ ¬ {𝑥} ∈ 𝐽))
65ralbidva 3155 . . . 4 (𝐽 ∈ Top → (∀𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝑋) ↔ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
73, 6bitrid 283 . . 3 (𝐽 ∈ Top → (𝑋 ⊆ ((limPt‘𝐽)‘𝑋) ↔ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
87pm5.32i 574 . 2 ((𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋)) ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
92, 8bitri 275 1 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wss 3916  {csn 4591   cuni 4873  cfv 6513  Topctop 22786  limPtclp 23027  Perfcperf 23028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-top 22787  df-cld 22912  df-ntr 22913  df-cls 22914  df-lp 23029  df-perf 23030
This theorem is referenced by:  perfi  23048  perfopn  23078  t1connperf  23329
  Copyright terms: Public domain W3C validator