MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isperf3 Structured version   Visualization version   GIF version

Theorem isperf3 23182
Description: A perfect space is a topology which has no open singletons. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
isperf3 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋

Proof of Theorem isperf3
StepHypRef Expression
1 lpfval.1 . . 3 𝑋 = 𝐽
21isperf2 23181 . 2 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))
3 dfss3 3997 . . . 4 (𝑋 ⊆ ((limPt‘𝐽)‘𝑋) ↔ ∀𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝑋))
41maxlp 23176 . . . . . 6 (𝐽 ∈ Top → (𝑥 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑥𝑋 ∧ ¬ {𝑥} ∈ 𝐽)))
54baibd 539 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑋) ↔ ¬ {𝑥} ∈ 𝐽))
65ralbidva 3182 . . . 4 (𝐽 ∈ Top → (∀𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝑋) ↔ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
73, 6bitrid 283 . . 3 (𝐽 ∈ Top → (𝑋 ⊆ ((limPt‘𝐽)‘𝑋) ↔ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
87pm5.32i 574 . 2 ((𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋)) ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
92, 8bitri 275 1 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976  {csn 4648   cuni 4931  cfv 6573  Topctop 22920  limPtclp 23163  Perfcperf 23164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-top 22921  df-cld 23048  df-ntr 23049  df-cls 23050  df-lp 23165  df-perf 23166
This theorem is referenced by:  perfi  23184  perfopn  23214  t1connperf  23465
  Copyright terms: Public domain W3C validator