![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isperf3 | Structured version Visualization version GIF version |
Description: A perfect space is a topology which has no open singletons. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isperf3 | ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpfval.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | isperf2 21177 | . 2 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) |
3 | dfss3 3741 | . . . 4 ⊢ (𝑋 ⊆ ((limPt‘𝐽)‘𝑋) ↔ ∀𝑥 ∈ 𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝑋)) | |
4 | 1 | maxlp 21172 | . . . . . 6 ⊢ (𝐽 ∈ Top → (𝑥 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑥 ∈ 𝑋 ∧ ¬ {𝑥} ∈ 𝐽))) |
5 | 4 | baibd 529 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑋) ↔ ¬ {𝑥} ∈ 𝐽)) |
6 | 5 | ralbidva 3134 | . . . 4 ⊢ (𝐽 ∈ Top → (∀𝑥 ∈ 𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝑋) ↔ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
7 | 3, 6 | syl5bb 272 | . . 3 ⊢ (𝐽 ∈ Top → (𝑋 ⊆ ((limPt‘𝐽)‘𝑋) ↔ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
8 | 7 | pm5.32i 564 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋)) ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
9 | 2, 8 | bitri 264 | 1 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ⊆ wss 3723 {csn 4316 ∪ cuni 4574 ‘cfv 6031 Topctop 20918 limPtclp 21159 Perfcperf 21160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-top 20919 df-cld 21044 df-ntr 21045 df-cls 21046 df-lp 21161 df-perf 21162 |
This theorem is referenced by: perfi 21180 perfopn 21210 t1connperf 21460 |
Copyright terms: Public domain | W3C validator |