| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isperf3 | Structured version Visualization version GIF version | ||
| Description: A perfect space is a topology which has no open singletons. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| isperf3 | ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | isperf2 23045 | . 2 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) |
| 3 | dfss3 3937 | . . . 4 ⊢ (𝑋 ⊆ ((limPt‘𝐽)‘𝑋) ↔ ∀𝑥 ∈ 𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝑋)) | |
| 4 | 1 | maxlp 23040 | . . . . . 6 ⊢ (𝐽 ∈ Top → (𝑥 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑥 ∈ 𝑋 ∧ ¬ {𝑥} ∈ 𝐽))) |
| 5 | 4 | baibd 539 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑋) ↔ ¬ {𝑥} ∈ 𝐽)) |
| 6 | 5 | ralbidva 3155 | . . . 4 ⊢ (𝐽 ∈ Top → (∀𝑥 ∈ 𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝑋) ↔ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
| 7 | 3, 6 | bitrid 283 | . . 3 ⊢ (𝐽 ∈ Top → (𝑋 ⊆ ((limPt‘𝐽)‘𝑋) ↔ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
| 8 | 7 | pm5.32i 574 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋)) ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
| 9 | 2, 8 | bitri 275 | 1 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3916 {csn 4591 ∪ cuni 4873 ‘cfv 6513 Topctop 22786 limPtclp 23027 Perfcperf 23028 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-top 22787 df-cld 22912 df-ntr 22913 df-cls 22914 df-lp 23029 df-perf 23030 |
| This theorem is referenced by: perfi 23048 perfopn 23078 t1connperf 23329 |
| Copyright terms: Public domain | W3C validator |