MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isperf3 Structured version   Visualization version   GIF version

Theorem isperf3 23069
Description: A perfect space is a topology which has no open singletons. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
isperf3 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋

Proof of Theorem isperf3
StepHypRef Expression
1 lpfval.1 . . 3 𝑋 = 𝐽
21isperf2 23068 . 2 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))
3 dfss3 3919 . . . 4 (𝑋 ⊆ ((limPt‘𝐽)‘𝑋) ↔ ∀𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝑋))
41maxlp 23063 . . . . . 6 (𝐽 ∈ Top → (𝑥 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑥𝑋 ∧ ¬ {𝑥} ∈ 𝐽)))
54baibd 539 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑋) ↔ ¬ {𝑥} ∈ 𝐽))
65ralbidva 3154 . . . 4 (𝐽 ∈ Top → (∀𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝑋) ↔ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
73, 6bitrid 283 . . 3 (𝐽 ∈ Top → (𝑋 ⊆ ((limPt‘𝐽)‘𝑋) ↔ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
87pm5.32i 574 . 2 ((𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋)) ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
92, 8bitri 275 1 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wss 3898  {csn 4575   cuni 4858  cfv 6486  Topctop 22809  limPtclp 23050  Perfcperf 23051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-top 22810  df-cld 22935  df-ntr 22936  df-cls 22937  df-lp 23052  df-perf 23053
This theorem is referenced by:  perfi  23071  perfopn  23101  t1connperf  23352
  Copyright terms: Public domain W3C validator