![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isperf3 | Structured version Visualization version GIF version |
Description: A perfect space is a topology which has no open singletons. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isperf3 | ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpfval.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | isperf2 23175 | . 2 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) |
3 | dfss3 3983 | . . . 4 ⊢ (𝑋 ⊆ ((limPt‘𝐽)‘𝑋) ↔ ∀𝑥 ∈ 𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝑋)) | |
4 | 1 | maxlp 23170 | . . . . . 6 ⊢ (𝐽 ∈ Top → (𝑥 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑥 ∈ 𝑋 ∧ ¬ {𝑥} ∈ 𝐽))) |
5 | 4 | baibd 539 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑋) ↔ ¬ {𝑥} ∈ 𝐽)) |
6 | 5 | ralbidva 3173 | . . . 4 ⊢ (𝐽 ∈ Top → (∀𝑥 ∈ 𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝑋) ↔ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
7 | 3, 6 | bitrid 283 | . . 3 ⊢ (𝐽 ∈ Top → (𝑋 ⊆ ((limPt‘𝐽)‘𝑋) ↔ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
8 | 7 | pm5.32i 574 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋)) ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
9 | 2, 8 | bitri 275 | 1 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ⊆ wss 3962 {csn 4630 ∪ cuni 4911 ‘cfv 6562 Topctop 22914 limPtclp 23157 Perfcperf 23158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-top 22915 df-cld 23042 df-ntr 23043 df-cls 23044 df-lp 23159 df-perf 23160 |
This theorem is referenced by: perfi 23178 perfopn 23208 t1connperf 23459 |
Copyright terms: Public domain | W3C validator |