MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isperf3 Structured version   Visualization version   GIF version

Theorem isperf3 22878
Description: A perfect space is a topology which has no open singletons. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
isperf3 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ βˆ€π‘₯ ∈ 𝑋 Β¬ {π‘₯} ∈ 𝐽))
Distinct variable groups:   π‘₯,𝐽   π‘₯,𝑋

Proof of Theorem isperf3
StepHypRef Expression
1 lpfval.1 . . 3 𝑋 = βˆͺ 𝐽
21isperf2 22877 . 2 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 βŠ† ((limPtβ€˜π½)β€˜π‘‹)))
3 dfss3 3970 . . . 4 (𝑋 βŠ† ((limPtβ€˜π½)β€˜π‘‹) ↔ βˆ€π‘₯ ∈ 𝑋 π‘₯ ∈ ((limPtβ€˜π½)β€˜π‘‹))
41maxlp 22872 . . . . . 6 (𝐽 ∈ Top β†’ (π‘₯ ∈ ((limPtβ€˜π½)β€˜π‘‹) ↔ (π‘₯ ∈ 𝑋 ∧ Β¬ {π‘₯} ∈ 𝐽)))
54baibd 539 . . . . 5 ((𝐽 ∈ Top ∧ π‘₯ ∈ 𝑋) β†’ (π‘₯ ∈ ((limPtβ€˜π½)β€˜π‘‹) ↔ Β¬ {π‘₯} ∈ 𝐽))
65ralbidva 3174 . . . 4 (𝐽 ∈ Top β†’ (βˆ€π‘₯ ∈ 𝑋 π‘₯ ∈ ((limPtβ€˜π½)β€˜π‘‹) ↔ βˆ€π‘₯ ∈ 𝑋 Β¬ {π‘₯} ∈ 𝐽))
73, 6bitrid 283 . . 3 (𝐽 ∈ Top β†’ (𝑋 βŠ† ((limPtβ€˜π½)β€˜π‘‹) ↔ βˆ€π‘₯ ∈ 𝑋 Β¬ {π‘₯} ∈ 𝐽))
87pm5.32i 574 . 2 ((𝐽 ∈ Top ∧ 𝑋 βŠ† ((limPtβ€˜π½)β€˜π‘‹)) ↔ (𝐽 ∈ Top ∧ βˆ€π‘₯ ∈ 𝑋 Β¬ {π‘₯} ∈ 𝐽))
92, 8bitri 275 1 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ βˆ€π‘₯ ∈ 𝑋 Β¬ {π‘₯} ∈ 𝐽))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060   βŠ† wss 3948  {csn 4628  βˆͺ cuni 4908  β€˜cfv 6543  Topctop 22616  limPtclp 22859  Perfcperf 22860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-top 22617  df-cld 22744  df-ntr 22745  df-cls 22746  df-lp 22861  df-perf 22862
This theorem is referenced by:  perfi  22880  perfopn  22910  t1connperf  23161
  Copyright terms: Public domain W3C validator