MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfi Structured version   Visualization version   GIF version

Theorem perfi 22306
Description: Property of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
perfi ((𝐽 ∈ Perf ∧ 𝑃𝑋) → ¬ {𝑃} ∈ 𝐽)

Proof of Theorem perfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . 4 𝑋 = 𝐽
21isperf3 22304 . . 3 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
32simprbi 497 . 2 (𝐽 ∈ Perf → ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽)
4 sneq 4571 . . . . 5 (𝑥 = 𝑃 → {𝑥} = {𝑃})
54eleq1d 2823 . . . 4 (𝑥 = 𝑃 → ({𝑥} ∈ 𝐽 ↔ {𝑃} ∈ 𝐽))
65notbid 318 . . 3 (𝑥 = 𝑃 → (¬ {𝑥} ∈ 𝐽 ↔ ¬ {𝑃} ∈ 𝐽))
76rspccva 3560 . 2 ((∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽𝑃𝑋) → ¬ {𝑃} ∈ 𝐽)
83, 7sylan 580 1 ((𝐽 ∈ Perf ∧ 𝑃𝑋) → ¬ {𝑃} ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  {csn 4561   cuni 4839  Topctop 22042  Perfcperf 22286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-top 22043  df-cld 22170  df-ntr 22171  df-cls 22172  df-lp 22287  df-perf 22288
This theorem is referenced by:  perfopn  22336
  Copyright terms: Public domain W3C validator