![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > perfi | Structured version Visualization version GIF version |
Description: Property of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
perfi | ⊢ ((𝐽 ∈ Perf ∧ 𝑃 ∈ 𝑋) → ¬ {𝑃} ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpfval.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | isperf3 22879 | . . 3 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
3 | 2 | simprbi 495 | . 2 ⊢ (𝐽 ∈ Perf → ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽) |
4 | sneq 4639 | . . . . 5 ⊢ (𝑥 = 𝑃 → {𝑥} = {𝑃}) | |
5 | 4 | eleq1d 2816 | . . . 4 ⊢ (𝑥 = 𝑃 → ({𝑥} ∈ 𝐽 ↔ {𝑃} ∈ 𝐽)) |
6 | 5 | notbid 317 | . . 3 ⊢ (𝑥 = 𝑃 → (¬ {𝑥} ∈ 𝐽 ↔ ¬ {𝑃} ∈ 𝐽)) |
7 | 6 | rspccva 3612 | . 2 ⊢ ((∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽 ∧ 𝑃 ∈ 𝑋) → ¬ {𝑃} ∈ 𝐽) |
8 | 3, 7 | sylan 578 | 1 ⊢ ((𝐽 ∈ Perf ∧ 𝑃 ∈ 𝑋) → ¬ {𝑃} ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 {csn 4629 ∪ cuni 4909 Topctop 22617 Perfcperf 22861 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-top 22618 df-cld 22745 df-ntr 22746 df-cls 22747 df-lp 22862 df-perf 22863 |
This theorem is referenced by: perfopn 22911 |
Copyright terms: Public domain | W3C validator |