MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfi Structured version   Visualization version   GIF version

Theorem perfi 23163
Description: Property of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
perfi ((𝐽 ∈ Perf ∧ 𝑃𝑋) → ¬ {𝑃} ∈ 𝐽)

Proof of Theorem perfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . 4 𝑋 = 𝐽
21isperf3 23161 . . 3 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
32simprbi 496 . 2 (𝐽 ∈ Perf → ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽)
4 sneq 4636 . . . . 5 (𝑥 = 𝑃 → {𝑥} = {𝑃})
54eleq1d 2826 . . . 4 (𝑥 = 𝑃 → ({𝑥} ∈ 𝐽 ↔ {𝑃} ∈ 𝐽))
65notbid 318 . . 3 (𝑥 = 𝑃 → (¬ {𝑥} ∈ 𝐽 ↔ ¬ {𝑃} ∈ 𝐽))
76rspccva 3621 . 2 ((∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽𝑃𝑋) → ¬ {𝑃} ∈ 𝐽)
83, 7sylan 580 1 ((𝐽 ∈ Perf ∧ 𝑃𝑋) → ¬ {𝑃} ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  {csn 4626   cuni 4907  Topctop 22899  Perfcperf 23143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-top 22900  df-cld 23027  df-ntr 23028  df-cls 23029  df-lp 23144  df-perf 23145
This theorem is referenced by:  perfopn  23193
  Copyright terms: Public domain W3C validator