MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfi Structured version   Visualization version   GIF version

Theorem perfi 23070
Description: Property of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
perfi ((𝐽 ∈ Perf ∧ 𝑃𝑋) → ¬ {𝑃} ∈ 𝐽)

Proof of Theorem perfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . 4 𝑋 = 𝐽
21isperf3 23068 . . 3 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
32simprbi 496 . 2 (𝐽 ∈ Perf → ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽)
4 sneq 4583 . . . . 5 (𝑥 = 𝑃 → {𝑥} = {𝑃})
54eleq1d 2816 . . . 4 (𝑥 = 𝑃 → ({𝑥} ∈ 𝐽 ↔ {𝑃} ∈ 𝐽))
65notbid 318 . . 3 (𝑥 = 𝑃 → (¬ {𝑥} ∈ 𝐽 ↔ ¬ {𝑃} ∈ 𝐽))
76rspccva 3571 . 2 ((∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽𝑃𝑋) → ¬ {𝑃} ∈ 𝐽)
83, 7sylan 580 1 ((𝐽 ∈ Perf ∧ 𝑃𝑋) → ¬ {𝑃} ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  {csn 4573   cuni 4856  Topctop 22808  Perfcperf 23050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-top 22809  df-cld 22934  df-ntr 22935  df-cls 22936  df-lp 23051  df-perf 23052
This theorem is referenced by:  perfopn  23100
  Copyright terms: Public domain W3C validator