MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perftop Structured version   Visualization version   GIF version

Theorem perftop 23185
Description: A perfect space is a topology. (Contributed by Mario Carneiro, 25-Dec-2016.)
Assertion
Ref Expression
perftop (𝐽 ∈ Perf → 𝐽 ∈ Top)

Proof of Theorem perftop
StepHypRef Expression
1 eqid 2740 . . 3 𝐽 = 𝐽
21isperf 23180 . 2 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘ 𝐽) = 𝐽))
32simplbi 497 1 (𝐽 ∈ Perf → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108   cuni 4931  cfv 6573  Topctop 22920  limPtclp 23163  Perfcperf 23164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-perf 23166
This theorem is referenced by:  perfopn  23214
  Copyright terms: Public domain W3C validator