MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perftop Structured version   Visualization version   GIF version

Theorem perftop 23092
Description: A perfect space is a topology. (Contributed by Mario Carneiro, 25-Dec-2016.)
Assertion
Ref Expression
perftop (𝐽 ∈ Perf → 𝐽 ∈ Top)

Proof of Theorem perftop
StepHypRef Expression
1 eqid 2735 . . 3 𝐽 = 𝐽
21isperf 23087 . 2 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘ 𝐽) = 𝐽))
32simplbi 497 1 (𝐽 ∈ Perf → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108   cuni 4883  cfv 6530  Topctop 22829  limPtclp 23070  Perfcperf 23071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6483  df-fv 6538  df-perf 23073
This theorem is referenced by:  perfopn  23121
  Copyright terms: Public domain W3C validator