MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perftop Structured version   Visualization version   GIF version

Theorem perftop 23104
Description: A perfect space is a topology. (Contributed by Mario Carneiro, 25-Dec-2016.)
Assertion
Ref Expression
perftop (𝐽 ∈ Perf → 𝐽 ∈ Top)

Proof of Theorem perftop
StepHypRef Expression
1 eqid 2725 . . 3 𝐽 = 𝐽
21isperf 23099 . 2 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘ 𝐽) = 𝐽))
32simplbi 496 1 (𝐽 ∈ Perf → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098   cuni 4909  cfv 6549  Topctop 22839  limPtclp 23082  Perfcperf 23083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-iota 6501  df-fv 6557  df-perf 23085
This theorem is referenced by:  perfopn  23133
  Copyright terms: Public domain W3C validator