![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the subspace topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.) |
Ref | Expression |
---|---|
restrcl | ⊢ ((𝐽 ↾t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0opn 22925 | . . 3 ⊢ ((𝐽 ↾t 𝐴) ∈ Top → ∅ ∈ (𝐽 ↾t 𝐴)) | |
2 | n0i 4345 | . . 3 ⊢ (∅ ∈ (𝐽 ↾t 𝐴) → ¬ (𝐽 ↾t 𝐴) = ∅) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐽 ↾t 𝐴) ∈ Top → ¬ (𝐽 ↾t 𝐴) = ∅) |
4 | restfn 17470 | . . . 4 ⊢ ↾t Fn (V × V) | |
5 | 4 | fndmi 6672 | . . 3 ⊢ dom ↾t = (V × V) |
6 | 5 | ndmov 7616 | . 2 ⊢ (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ∅) |
7 | 3, 6 | nsyl2 141 | 1 ⊢ ((𝐽 ↾t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ∅c0 4338 × cxp 5686 (class class class)co 7430 ↾t crest 17466 Topctop 22914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-rest 17468 df-top 22915 |
This theorem is referenced by: cnrest2r 23310 imacmp 23420 fiuncmp 23427 conncompss 23456 kgeni 23560 kgencmp 23568 kgencmp2 23569 |
Copyright terms: Public domain | W3C validator |