![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the subspace topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.) |
Ref | Expression |
---|---|
restrcl | ⊢ ((𝐽 ↾t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0opn 21216 | . . 3 ⊢ ((𝐽 ↾t 𝐴) ∈ Top → ∅ ∈ (𝐽 ↾t 𝐴)) | |
2 | n0i 4186 | . . 3 ⊢ (∅ ∈ (𝐽 ↾t 𝐴) → ¬ (𝐽 ↾t 𝐴) = ∅) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐽 ↾t 𝐴) ∈ Top → ¬ (𝐽 ↾t 𝐴) = ∅) |
4 | restfn 16554 | . . . 4 ⊢ ↾t Fn (V × V) | |
5 | fndm 6288 | . . . 4 ⊢ ( ↾t Fn (V × V) → dom ↾t = (V × V)) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ dom ↾t = (V × V) |
7 | 6 | ndmov 7148 | . 2 ⊢ (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ∅) |
8 | 3, 7 | nsyl2 145 | 1 ⊢ ((𝐽 ↾t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 Vcvv 3416 ∅c0 4179 × cxp 5405 dom cdm 5407 Fn wfn 6183 (class class class)co 6976 ↾t crest 16550 Topctop 21205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-1st 7501 df-2nd 7502 df-rest 16552 df-top 21206 |
This theorem is referenced by: cnrest2r 21599 imacmp 21709 fiuncmp 21716 conncompss 21745 kgeni 21849 kgencmp 21857 kgencmp2 21858 |
Copyright terms: Public domain | W3C validator |