MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restrcl Structured version   Visualization version   GIF version

Theorem restrcl 21469
Description: Reverse closure for the subspace topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restrcl ((𝐽t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V))

Proof of Theorem restrcl
StepHypRef Expression
1 0opn 21216 . . 3 ((𝐽t 𝐴) ∈ Top → ∅ ∈ (𝐽t 𝐴))
2 n0i 4186 . . 3 (∅ ∈ (𝐽t 𝐴) → ¬ (𝐽t 𝐴) = ∅)
31, 2syl 17 . 2 ((𝐽t 𝐴) ∈ Top → ¬ (𝐽t 𝐴) = ∅)
4 restfn 16554 . . . 4 t Fn (V × V)
5 fndm 6288 . . . 4 ( ↾t Fn (V × V) → dom ↾t = (V × V))
64, 5ax-mp 5 . . 3 dom ↾t = (V × V)
76ndmov 7148 . 2 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ∅)
83, 7nsyl2 145 1 ((𝐽t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387   = wceq 1507  wcel 2050  Vcvv 3416  c0 4179   × cxp 5405  dom cdm 5407   Fn wfn 6183  (class class class)co 6976  t crest 16550  Topctop 21205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-ov 6979  df-oprab 6980  df-mpo 6981  df-1st 7501  df-2nd 7502  df-rest 16552  df-top 21206
This theorem is referenced by:  cnrest2r  21599  imacmp  21709  fiuncmp  21716  conncompss  21745  kgeni  21849  kgencmp  21857  kgencmp2  21858
  Copyright terms: Public domain W3C validator