Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotaexeu Structured version   Visualization version   GIF version

Theorem iotaexeu 44414
Description: The iota class exists. This theorem does not require ax-nul 5264 for its proof. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotaexeu (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)

Proof of Theorem iotaexeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iotaval 6485 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
21eqcomd 2736 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → 𝑦 = (℩𝑥𝜑))
32eximi 1835 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑦 𝑦 = (℩𝑥𝜑))
4 eu6 2568 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
5 isset 3464 . 2 ((℩𝑥𝜑) ∈ V ↔ ∃𝑦 𝑦 = (℩𝑥𝜑))
63, 4, 53imtr4i 292 1 (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2562  Vcvv 3450  cio 6465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-un 3922  df-ss 3934  df-sn 4593  df-pr 4595  df-uni 4875  df-iota 6467
This theorem is referenced by:  iotasbc  44415  pm14.18  44424  iotavalb  44426  sbiota1  44430
  Copyright terms: Public domain W3C validator