| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iotaexeu | Structured version Visualization version GIF version | ||
| Description: The iota class exists. This theorem does not require ax-nul 5246 for its proof. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| iotaexeu | ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaval 6460 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) | |
| 2 | 1 | eqcomd 2739 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → 𝑦 = (℩𝑥𝜑)) |
| 3 | 2 | eximi 1836 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑦 𝑦 = (℩𝑥𝜑)) |
| 4 | eu6 2571 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
| 5 | isset 3451 | . 2 ⊢ ((℩𝑥𝜑) ∈ V ↔ ∃𝑦 𝑦 = (℩𝑥𝜑)) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∃!weu 2565 Vcvv 3437 ℩cio 6440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-ss 3915 df-sn 4576 df-pr 4578 df-uni 4859 df-iota 6442 |
| This theorem is referenced by: iotasbc 44536 pm14.18 44545 iotavalb 44547 sbiota1 44551 |
| Copyright terms: Public domain | W3C validator |