Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotaexeu Structured version   Visualization version   GIF version

Theorem iotaexeu 43167
Description: The iota class exists. This theorem does not require ax-nul 5306 for its proof. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotaexeu (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)

Proof of Theorem iotaexeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iotaval 6514 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
21eqcomd 2738 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → 𝑦 = (℩𝑥𝜑))
32eximi 1837 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑦 𝑦 = (℩𝑥𝜑))
4 eu6 2568 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
5 isset 3487 . 2 ((℩𝑥𝜑) ∈ V ↔ ∃𝑦 𝑦 = (℩𝑥𝜑))
63, 4, 53imtr4i 291 1 (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539   = wceq 1541  wex 1781  wcel 2106  ∃!weu 2562  Vcvv 3474  cio 6493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-un 3953  df-in 3955  df-ss 3965  df-sn 4629  df-pr 4631  df-uni 4909  df-iota 6495
This theorem is referenced by:  iotasbc  43168  pm14.18  43177  iotavalb  43179  sbiota1  43183
  Copyright terms: Public domain W3C validator