![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.01da | Structured version Visualization version GIF version |
Description: Deduction based on reductio ad absurdum. See pm2.01 188. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
pm2.01da.1 | ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.01da | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.01da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜓) | |
2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) |
3 | 2 | pm2.01d 190 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: efrirr 5680 omlimcl 8634 hartogslem1 9611 cfslb2n 10337 fin23lem41 10421 tskuni 10852 4sqlem18 17009 ramlb 17066 ivthlem2 25506 ivthlem3 25507 cosne0 26589 footne 28749 nsnlplig 30513 unbdqndv1 36474 unbdqndv2 36477 knoppndv 36500 dvrelog2b 42023 sticksstones22 42125 fmtno4prm 47449 |
Copyright terms: Public domain | W3C validator |