MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.01da Structured version   Visualization version   GIF version

Theorem pm2.01da 798
Description: Deduction based on reductio ad absurdum. See pm2.01 188. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypothesis
Ref Expression
pm2.01da.1 ((𝜑𝜓) → ¬ 𝜓)
Assertion
Ref Expression
pm2.01da (𝜑 → ¬ 𝜓)

Proof of Theorem pm2.01da
StepHypRef Expression
1 pm2.01da.1 . . 3 ((𝜑𝜓) → ¬ 𝜓)
21ex 412 . 2 (𝜑 → (𝜓 → ¬ 𝜓))
32pm2.01d 190 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  efrirr  5601  omlimcl  8502  hartogslem1  9439  cfslb2n  10170  fin23lem41  10254  tskuni  10685  4sqlem18  16881  ramlb  16938  ivthlem2  25400  ivthlem3  25401  cosne0  26485  footne  28721  nsnlplig  30482  unbdqndv1  36624  unbdqndv2  36627  knoppndv  36650  dvrelog2b  42232  sticksstones22  42334  fmtno4prm  47737
  Copyright terms: Public domain W3C validator