![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.01da | Structured version Visualization version GIF version |
Description: Deduction based on reductio ad absurdum. See pm2.01 188. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
pm2.01da.1 | ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.01da | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.01da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜓) | |
2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) |
3 | 2 | pm2.01d 189 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: efrirr 5648 omlimcl 8574 hartogslem1 9534 cfslb2n 10260 fin23lem41 10344 tskuni 10775 4sqlem18 16896 ramlb 16953 ivthlem2 25305 ivthlem3 25306 cosne0 26382 footne 28446 nsnlplig 30206 unbdqndv1 35875 unbdqndv2 35878 knoppndv 35901 dvrelog2b 41428 sticksstones22 41481 fmtno4prm 46753 |
Copyright terms: Public domain | W3C validator |