Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.01da | Structured version Visualization version GIF version |
Description: Deduction based on reductio ad absurdum. See pm2.01 192. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
pm2.01da.1 | ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.01da | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.01da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜓) | |
2 | 1 | ex 416 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) |
3 | 2 | pm2.01d 193 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: efrirr 5506 omlimcl 8235 hartogslem1 9079 cfslb2n 9768 fin23lem41 9852 tskuni 10283 4sqlem18 16398 ramlb 16455 ivthlem2 24204 ivthlem3 24205 cosne0 25273 footne 26669 nsnlplig 28416 unbdqndv1 34326 unbdqndv2 34329 knoppndv 34352 dvrelog2b 39693 fmtno4prm 44561 |
Copyright terms: Public domain | W3C validator |