| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.01da | Structured version Visualization version GIF version | ||
| Description: Deduction based on reductio ad absurdum. See pm2.01 188. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| pm2.01da.1 | ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.01da | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.01da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜓) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) |
| 3 | 2 | pm2.01d 190 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: efrirr 5618 omlimcl 8542 hartogslem1 9495 cfslb2n 10221 fin23lem41 10305 tskuni 10736 4sqlem18 16933 ramlb 16990 ivthlem2 25353 ivthlem3 25354 cosne0 26438 footne 28650 nsnlplig 30410 unbdqndv1 36496 unbdqndv2 36499 knoppndv 36522 dvrelog2b 42054 sticksstones22 42156 fmtno4prm 47576 |
| Copyright terms: Public domain | W3C validator |