MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.01da Structured version   Visualization version   GIF version

Theorem pm2.01da 795
Description: Deduction based on reductio ad absurdum. See pm2.01 188. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypothesis
Ref Expression
pm2.01da.1 ((𝜑𝜓) → ¬ 𝜓)
Assertion
Ref Expression
pm2.01da (𝜑 → ¬ 𝜓)

Proof of Theorem pm2.01da
StepHypRef Expression
1 pm2.01da.1 . . 3 ((𝜑𝜓) → ¬ 𝜓)
21ex 412 . 2 (𝜑 → (𝜓 → ¬ 𝜓))
32pm2.01d 189 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  efrirr  5569  omlimcl  8385  hartogslem1  9262  cfslb2n  10008  fin23lem41  10092  tskuni  10523  4sqlem18  16644  ramlb  16701  ivthlem2  24597  ivthlem3  24598  cosne0  25666  footne  27065  nsnlplig  28822  unbdqndv1  34667  unbdqndv2  34670  knoppndv  34693  dvrelog2b  40054  sticksstones22  40104  fmtno4prm  44979
  Copyright terms: Public domain W3C validator