MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.01da Structured version   Visualization version   GIF version

Theorem pm2.01da 799
Description: Deduction based on reductio ad absurdum. See pm2.01 188. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypothesis
Ref Expression
pm2.01da.1 ((𝜑𝜓) → ¬ 𝜓)
Assertion
Ref Expression
pm2.01da (𝜑 → ¬ 𝜓)

Proof of Theorem pm2.01da
StepHypRef Expression
1 pm2.01da.1 . . 3 ((𝜑𝜓) → ¬ 𝜓)
21ex 412 . 2 (𝜑 → (𝜓 → ¬ 𝜓))
32pm2.01d 190 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  efrirr  5668  omlimcl  8614  hartogslem1  9579  cfslb2n  10305  fin23lem41  10389  tskuni  10820  4sqlem18  16995  ramlb  17052  ivthlem2  25500  ivthlem3  25501  cosne0  26585  footne  28745  nsnlplig  30509  unbdqndv1  36490  unbdqndv2  36493  knoppndv  36516  dvrelog2b  42047  sticksstones22  42149  fmtno4prm  47499
  Copyright terms: Public domain W3C validator