MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.01da Structured version   Visualization version   GIF version

Theorem pm2.01da 798
Description: Deduction based on reductio ad absurdum. See pm2.01 188. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypothesis
Ref Expression
pm2.01da.1 ((𝜑𝜓) → ¬ 𝜓)
Assertion
Ref Expression
pm2.01da (𝜑 → ¬ 𝜓)

Proof of Theorem pm2.01da
StepHypRef Expression
1 pm2.01da.1 . . 3 ((𝜑𝜓) → ¬ 𝜓)
21ex 412 . 2 (𝜑 → (𝜓 → ¬ 𝜓))
32pm2.01d 190 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  efrirr  5591  omlimcl  8488  hartogslem1  9423  cfslb2n  10154  fin23lem41  10238  tskuni  10669  4sqlem18  16869  ramlb  16926  ivthlem2  25375  ivthlem3  25376  cosne0  26460  footne  28696  nsnlplig  30453  unbdqndv1  36542  unbdqndv2  36545  knoppndv  36568  dvrelog2b  42099  sticksstones22  42201  fmtno4prm  47606
  Copyright terms: Public domain W3C validator