Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.01da | Structured version Visualization version GIF version |
Description: Deduction based on reductio ad absurdum. See pm2.01 188. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
pm2.01da.1 | ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.01da | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.01da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜓) | |
2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) |
3 | 2 | pm2.01d 189 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: efrirr 5569 omlimcl 8385 hartogslem1 9262 cfslb2n 10008 fin23lem41 10092 tskuni 10523 4sqlem18 16644 ramlb 16701 ivthlem2 24597 ivthlem3 24598 cosne0 25666 footne 27065 nsnlplig 28822 unbdqndv1 34667 unbdqndv2 34670 knoppndv 34693 dvrelog2b 40054 sticksstones22 40104 fmtno4prm 44979 |
Copyright terms: Public domain | W3C validator |