| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.01da | Structured version Visualization version GIF version | ||
| Description: Deduction based on reductio ad absurdum. See pm2.01 188. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| pm2.01da.1 | ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.01da | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.01da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜓) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) |
| 3 | 2 | pm2.01d 190 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: efrirr 5603 omlimcl 8503 hartogslem1 9453 cfslb2n 10181 fin23lem41 10265 tskuni 10696 4sqlem18 16892 ramlb 16949 ivthlem2 25369 ivthlem3 25370 cosne0 26454 footne 28686 nsnlplig 30443 unbdqndv1 36484 unbdqndv2 36487 knoppndv 36510 dvrelog2b 42042 sticksstones22 42144 fmtno4prm 47563 |
| Copyright terms: Public domain | W3C validator |