| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.01da | Structured version Visualization version GIF version | ||
| Description: Deduction based on reductio ad absurdum. See pm2.01 188. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| pm2.01da.1 | ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.01da | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.01da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜓) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) |
| 3 | 2 | pm2.01d 190 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: efrirr 5634 omlimcl 8590 hartogslem1 9556 cfslb2n 10282 fin23lem41 10366 tskuni 10797 4sqlem18 16982 ramlb 17039 ivthlem2 25405 ivthlem3 25406 cosne0 26490 footne 28702 nsnlplig 30462 unbdqndv1 36526 unbdqndv2 36529 knoppndv 36552 dvrelog2b 42079 sticksstones22 42181 fmtno4prm 47589 |
| Copyright terms: Public domain | W3C validator |