| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.01da | Structured version Visualization version GIF version | ||
| Description: Deduction based on reductio ad absurdum. See pm2.01 188. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| pm2.01da.1 | ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.01da | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.01da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜓) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) |
| 3 | 2 | pm2.01d 190 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: efrirr 5601 omlimcl 8502 hartogslem1 9439 cfslb2n 10170 fin23lem41 10254 tskuni 10685 4sqlem18 16881 ramlb 16938 ivthlem2 25400 ivthlem3 25401 cosne0 26485 footne 28721 nsnlplig 30482 unbdqndv1 36624 unbdqndv2 36627 knoppndv 36650 dvrelog2b 42232 sticksstones22 42334 fmtno4prm 47737 |
| Copyright terms: Public domain | W3C validator |