| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.01da | Structured version Visualization version GIF version | ||
| Description: Deduction based on reductio ad absurdum. See pm2.01 188. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| pm2.01da.1 | ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.01da | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.01da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜓) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) |
| 3 | 2 | pm2.01d 190 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: efrirr 5591 omlimcl 8488 hartogslem1 9423 cfslb2n 10154 fin23lem41 10238 tskuni 10669 4sqlem18 16869 ramlb 16926 ivthlem2 25375 ivthlem3 25376 cosne0 26460 footne 28696 nsnlplig 30453 unbdqndv1 36542 unbdqndv2 36545 knoppndv 36568 dvrelog2b 42099 sticksstones22 42201 fmtno4prm 47606 |
| Copyright terms: Public domain | W3C validator |