| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndv | Structured version Visualization version GIF version | ||
| Description: The continuous nowhere differentiable function 𝑊 ( Knopp, K. (1918). Math. Z. 2, 1-26 ) is, in fact, nowhere differentiable. (Contributed by Asger C. Ipsen, 19-Aug-2021.) |
| Ref | Expression |
|---|---|
| knoppndv.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| knoppndv.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
| knoppndv.w | ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) |
| knoppndv.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
| knoppndv.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| knoppndv.1 | ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) |
| Ref | Expression |
|---|---|
| knoppndv | ⊢ (𝜑 → dom (ℝ D 𝑊) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . . 6 ⊢ ((𝜑 ∧ ℎ ∈ dom (ℝ D 𝑊)) → 𝜑) | |
| 2 | ax-resscn 11132 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℂ | |
| 3 | 2 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 4 | knoppndv.t | . . . . . . . . . . 11 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 5 | knoppndv.f | . . . . . . . . . . 11 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) | |
| 6 | knoppndv.w | . . . . . . . . . . 11 ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) | |
| 7 | knoppndv.n | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 8 | knoppndv.c | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) | |
| 9 | 8 | knoppndvlem3 36509 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
| 10 | 9 | simpld 494 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 11 | 9 | simprd 495 | . . . . . . . . . . 11 ⊢ (𝜑 → (abs‘𝐶) < 1) |
| 12 | 4, 5, 6, 7, 10, 11 | knoppcn 36499 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ (ℝ–cn→ℂ)) |
| 13 | cncff 24793 | . . . . . . . . . 10 ⊢ (𝑊 ∈ (ℝ–cn→ℂ) → 𝑊:ℝ⟶ℂ) | |
| 14 | 12, 13 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑊:ℝ⟶ℂ) |
| 15 | ssidd 3973 | . . . . . . . . 9 ⊢ (𝜑 → ℝ ⊆ ℝ) | |
| 16 | 3, 14, 15 | dvbss 25809 | . . . . . . . 8 ⊢ (𝜑 → dom (ℝ D 𝑊) ⊆ ℝ) |
| 17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ ℎ ∈ dom (ℝ D 𝑊)) → dom (ℝ D 𝑊) ⊆ ℝ) |
| 18 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ ℎ ∈ dom (ℝ D 𝑊)) → ℎ ∈ dom (ℝ D 𝑊)) | |
| 19 | 17, 18 | sseldd 3950 | . . . . . 6 ⊢ ((𝜑 ∧ ℎ ∈ dom (ℝ D 𝑊)) → ℎ ∈ ℝ) |
| 20 | 1, 19 | jca 511 | . . . . 5 ⊢ ((𝜑 ∧ ℎ ∈ dom (ℝ D 𝑊)) → (𝜑 ∧ ℎ ∈ ℝ)) |
| 21 | ssidd 3973 | . . . . . 6 ⊢ ((𝜑 ∧ ℎ ∈ ℝ) → ℝ ⊆ ℝ) | |
| 22 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ℎ ∈ ℝ) → 𝑊:ℝ⟶ℂ) |
| 23 | 8 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ ℎ ∈ ℝ) ∧ (𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+)) → 𝐶 ∈ (-1(,)1)) |
| 24 | simprr 772 | . . . . . . . 8 ⊢ (((𝜑 ∧ ℎ ∈ ℝ) ∧ (𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+)) → 𝑑 ∈ ℝ+) | |
| 25 | simprl 770 | . . . . . . . 8 ⊢ (((𝜑 ∧ ℎ ∈ ℝ) ∧ (𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+)) → 𝑒 ∈ ℝ+) | |
| 26 | simplr 768 | . . . . . . . 8 ⊢ (((𝜑 ∧ ℎ ∈ ℝ) ∧ (𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+)) → ℎ ∈ ℝ) | |
| 27 | 7 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ ℎ ∈ ℝ) ∧ (𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+)) → 𝑁 ∈ ℕ) |
| 28 | knoppndv.1 | . . . . . . . . 9 ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) | |
| 29 | 28 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ ℎ ∈ ℝ) ∧ (𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+)) → 1 < (𝑁 · (abs‘𝐶))) |
| 30 | 4, 5, 6, 23, 24, 25, 26, 27, 29 | knoppndvlem22 36528 | . . . . . . 7 ⊢ (((𝜑 ∧ ℎ ∈ ℝ) ∧ (𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+)) → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎 ≤ ℎ ∧ ℎ ≤ 𝑏) ∧ ((𝑏 − 𝑎) < 𝑑 ∧ 𝑎 ≠ 𝑏) ∧ 𝑒 ≤ ((abs‘((𝑊‘𝑏) − (𝑊‘𝑎))) / (𝑏 − 𝑎)))) |
| 31 | 30 | ralrimivva 3181 | . . . . . 6 ⊢ ((𝜑 ∧ ℎ ∈ ℝ) → ∀𝑒 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎 ≤ ℎ ∧ ℎ ≤ 𝑏) ∧ ((𝑏 − 𝑎) < 𝑑 ∧ 𝑎 ≠ 𝑏) ∧ 𝑒 ≤ ((abs‘((𝑊‘𝑏) − (𝑊‘𝑎))) / (𝑏 − 𝑎)))) |
| 32 | 21, 22, 31 | unbdqndv2 36506 | . . . . 5 ⊢ ((𝜑 ∧ ℎ ∈ ℝ) → ¬ ℎ ∈ dom (ℝ D 𝑊)) |
| 33 | 20, 32 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ ℎ ∈ dom (ℝ D 𝑊)) → ¬ ℎ ∈ dom (ℝ D 𝑊)) |
| 34 | 33 | pm2.01da 798 | . . 3 ⊢ (𝜑 → ¬ ℎ ∈ dom (ℝ D 𝑊)) |
| 35 | 34 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀ℎ ¬ ℎ ∈ dom (ℝ D 𝑊)) |
| 36 | eq0 4316 | . 2 ⊢ (dom (ℝ D 𝑊) = ∅ ↔ ∀ℎ ¬ ℎ ∈ dom (ℝ D 𝑊)) | |
| 37 | 35, 36 | sylibr 234 | 1 ⊢ (𝜑 → dom (ℝ D 𝑊) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 ⊆ wss 3917 ∅c0 4299 class class class wbr 5110 ↦ cmpt 5191 dom cdm 5641 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 1c1 11076 + caddc 11078 · cmul 11080 < clt 11215 ≤ cle 11216 − cmin 11412 -cneg 11413 / cdiv 11842 ℕcn 12193 2c2 12248 ℕ0cn0 12449 ℝ+crp 12958 (,)cioo 13313 ⌊cfl 13759 ↑cexp 14033 abscabs 15207 Σcsu 15659 –cn→ccncf 24776 D cdv 25771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-dvds 16230 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-ntr 22914 df-cn 23121 df-cnp 23122 df-tx 23456 df-hmeo 23649 df-xms 24215 df-ms 24216 df-tms 24217 df-cncf 24778 df-limc 25774 df-dv 25775 df-ulm 26293 |
| This theorem is referenced by: cnndvlem1 36532 |
| Copyright terms: Public domain | W3C validator |