| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndv | Structured version Visualization version GIF version | ||
| Description: The continuous nowhere differentiable function 𝑊 ( Knopp, K. (1918). Math. Z. 2, 1-26 ) is, in fact, nowhere differentiable. (Contributed by Asger C. Ipsen, 19-Aug-2021.) |
| Ref | Expression |
|---|---|
| knoppndv.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| knoppndv.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
| knoppndv.w | ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) |
| knoppndv.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
| knoppndv.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| knoppndv.1 | ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) |
| Ref | Expression |
|---|---|
| knoppndv | ⊢ (𝜑 → dom (ℝ D 𝑊) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . . 6 ⊢ ((𝜑 ∧ ℎ ∈ dom (ℝ D 𝑊)) → 𝜑) | |
| 2 | ax-resscn 11125 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℂ | |
| 3 | 2 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 4 | knoppndv.t | . . . . . . . . . . 11 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 5 | knoppndv.f | . . . . . . . . . . 11 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) | |
| 6 | knoppndv.w | . . . . . . . . . . 11 ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) | |
| 7 | knoppndv.n | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 8 | knoppndv.c | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) | |
| 9 | 8 | knoppndvlem3 36502 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
| 10 | 9 | simpld 494 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 11 | 9 | simprd 495 | . . . . . . . . . . 11 ⊢ (𝜑 → (abs‘𝐶) < 1) |
| 12 | 4, 5, 6, 7, 10, 11 | knoppcn 36492 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ (ℝ–cn→ℂ)) |
| 13 | cncff 24786 | . . . . . . . . . 10 ⊢ (𝑊 ∈ (ℝ–cn→ℂ) → 𝑊:ℝ⟶ℂ) | |
| 14 | 12, 13 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑊:ℝ⟶ℂ) |
| 15 | ssidd 3970 | . . . . . . . . 9 ⊢ (𝜑 → ℝ ⊆ ℝ) | |
| 16 | 3, 14, 15 | dvbss 25802 | . . . . . . . 8 ⊢ (𝜑 → dom (ℝ D 𝑊) ⊆ ℝ) |
| 17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ ℎ ∈ dom (ℝ D 𝑊)) → dom (ℝ D 𝑊) ⊆ ℝ) |
| 18 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ ℎ ∈ dom (ℝ D 𝑊)) → ℎ ∈ dom (ℝ D 𝑊)) | |
| 19 | 17, 18 | sseldd 3947 | . . . . . 6 ⊢ ((𝜑 ∧ ℎ ∈ dom (ℝ D 𝑊)) → ℎ ∈ ℝ) |
| 20 | 1, 19 | jca 511 | . . . . 5 ⊢ ((𝜑 ∧ ℎ ∈ dom (ℝ D 𝑊)) → (𝜑 ∧ ℎ ∈ ℝ)) |
| 21 | ssidd 3970 | . . . . . 6 ⊢ ((𝜑 ∧ ℎ ∈ ℝ) → ℝ ⊆ ℝ) | |
| 22 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ℎ ∈ ℝ) → 𝑊:ℝ⟶ℂ) |
| 23 | 8 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ ℎ ∈ ℝ) ∧ (𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+)) → 𝐶 ∈ (-1(,)1)) |
| 24 | simprr 772 | . . . . . . . 8 ⊢ (((𝜑 ∧ ℎ ∈ ℝ) ∧ (𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+)) → 𝑑 ∈ ℝ+) | |
| 25 | simprl 770 | . . . . . . . 8 ⊢ (((𝜑 ∧ ℎ ∈ ℝ) ∧ (𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+)) → 𝑒 ∈ ℝ+) | |
| 26 | simplr 768 | . . . . . . . 8 ⊢ (((𝜑 ∧ ℎ ∈ ℝ) ∧ (𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+)) → ℎ ∈ ℝ) | |
| 27 | 7 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ ℎ ∈ ℝ) ∧ (𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+)) → 𝑁 ∈ ℕ) |
| 28 | knoppndv.1 | . . . . . . . . 9 ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) | |
| 29 | 28 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ ℎ ∈ ℝ) ∧ (𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+)) → 1 < (𝑁 · (abs‘𝐶))) |
| 30 | 4, 5, 6, 23, 24, 25, 26, 27, 29 | knoppndvlem22 36521 | . . . . . . 7 ⊢ (((𝜑 ∧ ℎ ∈ ℝ) ∧ (𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+)) → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎 ≤ ℎ ∧ ℎ ≤ 𝑏) ∧ ((𝑏 − 𝑎) < 𝑑 ∧ 𝑎 ≠ 𝑏) ∧ 𝑒 ≤ ((abs‘((𝑊‘𝑏) − (𝑊‘𝑎))) / (𝑏 − 𝑎)))) |
| 31 | 30 | ralrimivva 3180 | . . . . . 6 ⊢ ((𝜑 ∧ ℎ ∈ ℝ) → ∀𝑒 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎 ≤ ℎ ∧ ℎ ≤ 𝑏) ∧ ((𝑏 − 𝑎) < 𝑑 ∧ 𝑎 ≠ 𝑏) ∧ 𝑒 ≤ ((abs‘((𝑊‘𝑏) − (𝑊‘𝑎))) / (𝑏 − 𝑎)))) |
| 32 | 21, 22, 31 | unbdqndv2 36499 | . . . . 5 ⊢ ((𝜑 ∧ ℎ ∈ ℝ) → ¬ ℎ ∈ dom (ℝ D 𝑊)) |
| 33 | 20, 32 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ ℎ ∈ dom (ℝ D 𝑊)) → ¬ ℎ ∈ dom (ℝ D 𝑊)) |
| 34 | 33 | pm2.01da 798 | . . 3 ⊢ (𝜑 → ¬ ℎ ∈ dom (ℝ D 𝑊)) |
| 35 | 34 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀ℎ ¬ ℎ ∈ dom (ℝ D 𝑊)) |
| 36 | eq0 4313 | . 2 ⊢ (dom (ℝ D 𝑊) = ∅ ↔ ∀ℎ ¬ ℎ ∈ dom (ℝ D 𝑊)) | |
| 37 | 35, 36 | sylibr 234 | 1 ⊢ (𝜑 → dom (ℝ D 𝑊) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ⊆ wss 3914 ∅c0 4296 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 1c1 11069 + caddc 11071 · cmul 11073 < clt 11208 ≤ cle 11209 − cmin 11405 -cneg 11406 / cdiv 11835 ℕcn 12186 2c2 12241 ℕ0cn0 12442 ℝ+crp 12951 (,)cioo 13306 ⌊cfl 13752 ↑cexp 14026 abscabs 15200 Σcsu 15652 –cn→ccncf 24769 D cdv 25764 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-dvds 16223 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-ntr 22907 df-cn 23114 df-cnp 23115 df-tx 23449 df-hmeo 23642 df-xms 24208 df-ms 24209 df-tms 24210 df-cncf 24771 df-limc 25767 df-dv 25768 df-ulm 26286 |
| This theorem is referenced by: cnndvlem1 36525 |
| Copyright terms: Public domain | W3C validator |