![]() |
Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndv | Structured version Visualization version GIF version |
Description: The continuous nowhere differentiable function π ( Knopp, K. (1918). Math. Z. 2, 1-26 ) is, in fact, nowhere differentiable. (Contributed by Asger C. Ipsen, 19-Aug-2021.) |
Ref | Expression |
---|---|
knoppndv.t | β’ π = (π₯ β β β¦ (absβ((ββ(π₯ + (1 / 2))) β π₯))) |
knoppndv.f | β’ πΉ = (π¦ β β β¦ (π β β0 β¦ ((πΆβπ) Β· (πβ(((2 Β· π)βπ) Β· π¦))))) |
knoppndv.w | β’ π = (π€ β β β¦ Ξ£π β β0 ((πΉβπ€)βπ)) |
knoppndv.c | β’ (π β πΆ β (-1(,)1)) |
knoppndv.n | β’ (π β π β β) |
knoppndv.1 | β’ (π β 1 < (π Β· (absβπΆ))) |
Ref | Expression |
---|---|
knoppndv | β’ (π β dom (β D π) = β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . . 6 β’ ((π β§ β β dom (β D π)) β π) | |
2 | ax-resscn 11162 | . . . . . . . . . 10 β’ β β β | |
3 | 2 | a1i 11 | . . . . . . . . 9 β’ (π β β β β) |
4 | knoppndv.t | . . . . . . . . . . 11 β’ π = (π₯ β β β¦ (absβ((ββ(π₯ + (1 / 2))) β π₯))) | |
5 | knoppndv.f | . . . . . . . . . . 11 β’ πΉ = (π¦ β β β¦ (π β β0 β¦ ((πΆβπ) Β· (πβ(((2 Β· π)βπ) Β· π¦))))) | |
6 | knoppndv.w | . . . . . . . . . . 11 β’ π = (π€ β β β¦ Ξ£π β β0 ((πΉβπ€)βπ)) | |
7 | knoppndv.n | . . . . . . . . . . 11 β’ (π β π β β) | |
8 | knoppndv.c | . . . . . . . . . . . . 13 β’ (π β πΆ β (-1(,)1)) | |
9 | 8 | knoppndvlem3 35846 | . . . . . . . . . . . 12 β’ (π β (πΆ β β β§ (absβπΆ) < 1)) |
10 | 9 | simpld 494 | . . . . . . . . . . 11 β’ (π β πΆ β β) |
11 | 9 | simprd 495 | . . . . . . . . . . 11 β’ (π β (absβπΆ) < 1) |
12 | 4, 5, 6, 7, 10, 11 | knoppcn 35836 | . . . . . . . . . 10 β’ (π β π β (ββcnββ)) |
13 | cncff 24723 | . . . . . . . . . 10 β’ (π β (ββcnββ) β π:ββΆβ) | |
14 | 12, 13 | syl 17 | . . . . . . . . 9 β’ (π β π:ββΆβ) |
15 | ssidd 3997 | . . . . . . . . 9 β’ (π β β β β) | |
16 | 3, 14, 15 | dvbss 25740 | . . . . . . . 8 β’ (π β dom (β D π) β β) |
17 | 16 | adantr 480 | . . . . . . 7 β’ ((π β§ β β dom (β D π)) β dom (β D π) β β) |
18 | simpr 484 | . . . . . . 7 β’ ((π β§ β β dom (β D π)) β β β dom (β D π)) | |
19 | 17, 18 | sseldd 3975 | . . . . . 6 β’ ((π β§ β β dom (β D π)) β β β β) |
20 | 1, 19 | jca 511 | . . . . 5 β’ ((π β§ β β dom (β D π)) β (π β§ β β β)) |
21 | ssidd 3997 | . . . . . 6 β’ ((π β§ β β β) β β β β) | |
22 | 14 | adantr 480 | . . . . . 6 β’ ((π β§ β β β) β π:ββΆβ) |
23 | 8 | ad2antrr 723 | . . . . . . . 8 β’ (((π β§ β β β) β§ (π β β+ β§ π β β+)) β πΆ β (-1(,)1)) |
24 | simprr 770 | . . . . . . . 8 β’ (((π β§ β β β) β§ (π β β+ β§ π β β+)) β π β β+) | |
25 | simprl 768 | . . . . . . . 8 β’ (((π β§ β β β) β§ (π β β+ β§ π β β+)) β π β β+) | |
26 | simplr 766 | . . . . . . . 8 β’ (((π β§ β β β) β§ (π β β+ β§ π β β+)) β β β β) | |
27 | 7 | ad2antrr 723 | . . . . . . . 8 β’ (((π β§ β β β) β§ (π β β+ β§ π β β+)) β π β β) |
28 | knoppndv.1 | . . . . . . . . 9 β’ (π β 1 < (π Β· (absβπΆ))) | |
29 | 28 | ad2antrr 723 | . . . . . . . 8 β’ (((π β§ β β β) β§ (π β β+ β§ π β β+)) β 1 < (π Β· (absβπΆ))) |
30 | 4, 5, 6, 23, 24, 25, 26, 27, 29 | knoppndvlem22 35865 | . . . . . . 7 β’ (((π β§ β β β) β§ (π β β+ β§ π β β+)) β βπ β β βπ β β ((π β€ β β§ β β€ π) β§ ((π β π) < π β§ π β π) β§ π β€ ((absβ((πβπ) β (πβπ))) / (π β π)))) |
31 | 30 | ralrimivva 3192 | . . . . . 6 β’ ((π β§ β β β) β βπ β β+ βπ β β+ βπ β β βπ β β ((π β€ β β§ β β€ π) β§ ((π β π) < π β§ π β π) β§ π β€ ((absβ((πβπ) β (πβπ))) / (π β π)))) |
32 | 21, 22, 31 | unbdqndv2 35843 | . . . . 5 β’ ((π β§ β β β) β Β¬ β β dom (β D π)) |
33 | 20, 32 | syl 17 | . . . 4 β’ ((π β§ β β dom (β D π)) β Β¬ β β dom (β D π)) |
34 | 33 | pm2.01da 796 | . . 3 β’ (π β Β¬ β β dom (β D π)) |
35 | 34 | alrimiv 1922 | . 2 β’ (π β ββ Β¬ β β dom (β D π)) |
36 | eq0 4335 | . 2 β’ (dom (β D π) = β β ββ Β¬ β β dom (β D π)) | |
37 | 35, 36 | sylibr 233 | 1 β’ (π β dom (β D π) = β ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 β§ w3a 1084 βwal 1531 = wceq 1533 β wcel 2098 β wne 2932 βwrex 3062 β wss 3940 β c0 4314 class class class wbr 5138 β¦ cmpt 5221 dom cdm 5666 βΆwf 6529 βcfv 6533 (class class class)co 7401 βcc 11103 βcr 11104 1c1 11106 + caddc 11108 Β· cmul 11110 < clt 11244 β€ cle 11245 β cmin 11440 -cneg 11441 / cdiv 11867 βcn 12208 2c2 12263 β0cn0 12468 β+crp 12970 (,)cioo 13320 βcfl 13751 βcexp 14023 abscabs 15177 Ξ£csu 15628 βcnβccncf 24706 D cdv 25702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9631 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 ax-addf 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-er 8698 df-map 8817 df-pm 8818 df-ixp 8887 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fsupp 9357 df-fi 9401 df-sup 9432 df-inf 9433 df-oi 9500 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-dvds 16194 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-pt 17386 df-prds 17389 df-xrs 17444 df-qtop 17449 df-imas 17450 df-xps 17452 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18560 df-sgrp 18639 df-mnd 18655 df-submnd 18701 df-mulg 18983 df-cntz 19218 df-cmn 19687 df-psmet 21215 df-xmet 21216 df-met 21217 df-bl 21218 df-mopn 21219 df-cnfld 21224 df-top 22706 df-topon 22723 df-topsp 22745 df-bases 22759 df-ntr 22834 df-cn 23041 df-cnp 23042 df-tx 23376 df-hmeo 23569 df-xms 24136 df-ms 24137 df-tms 24138 df-cncf 24708 df-limc 25705 df-dv 25706 df-ulm 26218 |
This theorem is referenced by: cnndvlem1 35869 |
Copyright terms: Public domain | W3C validator |