Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unbdqndv2 Structured version   Visualization version   GIF version

Theorem unbdqndv2 33459
Description: Variant of unbdqndv1 33456 with the hypothesis that (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) is unbounded where 𝑥𝐴 and 𝐴𝑦. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unbdqndv2.x (𝜑𝑋 ⊆ ℝ)
unbdqndv2.f (𝜑𝐹:𝑋⟶ℂ)
unbdqndv2.1 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
Assertion
Ref Expression
unbdqndv2 (𝜑 → ¬ 𝐴 ∈ dom (ℝ D 𝐹))
Distinct variable groups:   𝐴,𝑏,𝑑,𝑥,𝑦   𝐹,𝑏,𝑑,𝑥,𝑦   𝑋,𝑏,𝑑,𝑥,𝑦   𝜑,𝑏,𝑑,𝑥,𝑦

Proof of Theorem unbdqndv2
Dummy variables 𝑐 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2795 . . 3 (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴))) = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))
2 ax-resscn 10440 . . . 4 ℝ ⊆ ℂ
32a1i 11 . . 3 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → ℝ ⊆ ℂ)
4 unbdqndv2.x . . . 4 (𝜑𝑋 ⊆ ℝ)
54adantr 481 . . 3 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → 𝑋 ⊆ ℝ)
6 unbdqndv2.f . . . 4 (𝜑𝐹:𝑋⟶ℂ)
76adantr 481 . . 3 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → 𝐹:𝑋⟶ℂ)
8 breq1 4965 . . . . . . . . . . 11 (𝑏 = (2 · 𝑐) → (𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)) ↔ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
983anbi3d 1434 . . . . . . . . . 10 (𝑏 = (2 · 𝑐) → (((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) ↔ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
109rexbidv 3260 . . . . . . . . 9 (𝑏 = (2 · 𝑐) → (∃𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) ↔ ∃𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
1110rexbidv 3260 . . . . . . . 8 (𝑏 = (2 · 𝑐) → (∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) ↔ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
1211ralbidv 3164 . . . . . . 7 (𝑏 = (2 · 𝑐) → (∀𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) ↔ ∀𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
13 unbdqndv2.1 . . . . . . . 8 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
1413ad2antrr 722 . . . . . . 7 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
15 2rp 12244 . . . . . . . . 9 2 ∈ ℝ+
1615a1i 11 . . . . . . . 8 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 2 ∈ ℝ+)
17 simprl 767 . . . . . . . 8 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑐 ∈ ℝ+)
1816, 17rpmulcld 12297 . . . . . . 7 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (2 · 𝑐) ∈ ℝ+)
1912, 14, 18rspcdva 3565 . . . . . 6 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∀𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
20 simprr 769 . . . . . 6 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑑 ∈ ℝ+)
21 rsp 3172 . . . . . 6 (∀𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) → (𝑑 ∈ ℝ+ → ∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
2219, 20, 21sylc 65 . . . . 5 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
23 eqid 2795 . . . . . . . . . 10 if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦)
245ad3antrrr 726 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑋 ⊆ ℝ)
257ad3antrrr 726 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝐹:𝑋⟶ℂ)
263, 7, 5dvbss 24182 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → dom (ℝ D 𝐹) ⊆ 𝑋)
27 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → 𝐴 ∈ dom (ℝ D 𝐹))
2826, 27sseldd 3890 . . . . . . . . . . . . 13 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → 𝐴𝑋)
2928adantr 481 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝐴𝑋)
3029adantr 481 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) → 𝐴𝑋)
3130adantr 481 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝐴𝑋)
3217ad2antrr 722 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑐 ∈ ℝ+)
3320ad2antrr 722 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑑 ∈ ℝ+)
34 simplrl 773 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑥𝑋)
35 simplrr 774 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑦𝑋)
36 simpr2r 1226 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑥𝑦)
37 simpr1l 1223 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑥𝐴)
38 simpr1r 1224 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝐴𝑦)
39 simpr2l 1225 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → (𝑦𝑥) < 𝑑)
40 simpr3 1189 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))
411, 23, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40unbdqndv2lem2 33458 . . . . . . . . 9 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → (if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦))))))
4241simpld 495 . . . . . . . 8 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) ∈ (𝑋 ∖ {𝐴}))
43 fvoveq1 7039 . . . . . . . . . . 11 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → (abs‘(𝑤𝐴)) = (abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)))
4443breq1d 4972 . . . . . . . . . 10 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → ((abs‘(𝑤𝐴)) < 𝑑 ↔ (abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑))
45 2fveq3 6543 . . . . . . . . . . 11 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤)) = (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦))))
4645breq2d 4974 . . . . . . . . . 10 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → (𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤)) ↔ 𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦)))))
4744, 46anbi12d 630 . . . . . . . . 9 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → (((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))) ↔ ((abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦))))))
4847adantl 482 . . . . . . . 8 ((((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) ∧ 𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦)) → (((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))) ↔ ((abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦))))))
4941simprd 496 . . . . . . . 8 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → ((abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦)))))
5042, 48, 49rspcedvd 3566 . . . . . . 7 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))))
5150ex 413 . . . . . 6 ((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤)))))
5251rexlimdvva 3257 . . . . 5 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤)))))
5322, 52mpd 15 . . . 4 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))))
5453ralrimivva 3158 . . 3 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → ∀𝑐 ∈ ℝ+𝑑 ∈ ℝ+𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))))
551, 3, 5, 7, 54unbdqndv1 33456 . 2 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → ¬ 𝐴 ∈ dom (ℝ D 𝐹))
5655pm2.01da 795 1 (𝜑 → ¬ 𝐴 ∈ dom (ℝ D 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wne 2984  wral 3105  wrex 3106  cdif 3856  wss 3859  ifcif 4381  {csn 4472   class class class wbr 4962  cmpt 5041  dom cdm 5443  wf 6221  cfv 6225  (class class class)co 7016  cc 10381  cr 10382   · cmul 10388   < clt 10521  cle 10522  cmin 10717   / cdiv 11145  2c2 11540  +crp 12239  abscabs 14427   D cdv 24144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fi 8721  df-sup 8752  df-inf 8753  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-fz 12743  df-seq 13220  df-exp 13280  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-plusg 16407  df-mulr 16408  df-starv 16409  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-rest 16525  df-topn 16526  df-topgen 16546  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-ntr 21312  df-cnp 21520  df-xms 22613  df-ms 22614  df-limc 24147  df-dv 24148
This theorem is referenced by:  knoppndv  33482
  Copyright terms: Public domain W3C validator