Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unbdqndv2 Structured version   Visualization version   GIF version

Theorem unbdqndv2 34974
Description: Variant of unbdqndv1 34971 with the hypothesis that (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) is unbounded where 𝑥𝐴 and 𝐴𝑦. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unbdqndv2.x (𝜑𝑋 ⊆ ℝ)
unbdqndv2.f (𝜑𝐹:𝑋⟶ℂ)
unbdqndv2.1 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
Assertion
Ref Expression
unbdqndv2 (𝜑 → ¬ 𝐴 ∈ dom (ℝ D 𝐹))
Distinct variable groups:   𝐴,𝑏,𝑑,𝑥,𝑦   𝐹,𝑏,𝑑,𝑥,𝑦   𝑋,𝑏,𝑑,𝑥,𝑦   𝜑,𝑏,𝑑,𝑥,𝑦

Proof of Theorem unbdqndv2
Dummy variables 𝑐 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴))) = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))
2 ax-resscn 11108 . . . 4 ℝ ⊆ ℂ
32a1i 11 . . 3 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → ℝ ⊆ ℂ)
4 unbdqndv2.x . . . 4 (𝜑𝑋 ⊆ ℝ)
54adantr 481 . . 3 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → 𝑋 ⊆ ℝ)
6 unbdqndv2.f . . . 4 (𝜑𝐹:𝑋⟶ℂ)
76adantr 481 . . 3 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → 𝐹:𝑋⟶ℂ)
8 breq1 5108 . . . . . . . . . . 11 (𝑏 = (2 · 𝑐) → (𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)) ↔ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
983anbi3d 1442 . . . . . . . . . 10 (𝑏 = (2 · 𝑐) → (((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) ↔ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
109rexbidv 3175 . . . . . . . . 9 (𝑏 = (2 · 𝑐) → (∃𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) ↔ ∃𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
1110rexbidv 3175 . . . . . . . 8 (𝑏 = (2 · 𝑐) → (∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) ↔ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
1211ralbidv 3174 . . . . . . 7 (𝑏 = (2 · 𝑐) → (∀𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) ↔ ∀𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
13 unbdqndv2.1 . . . . . . . 8 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
1413ad2antrr 724 . . . . . . 7 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
15 2rp 12920 . . . . . . . . 9 2 ∈ ℝ+
1615a1i 11 . . . . . . . 8 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 2 ∈ ℝ+)
17 simprl 769 . . . . . . . 8 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑐 ∈ ℝ+)
1816, 17rpmulcld 12973 . . . . . . 7 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (2 · 𝑐) ∈ ℝ+)
1912, 14, 18rspcdva 3582 . . . . . 6 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∀𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
20 simprr 771 . . . . . 6 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑑 ∈ ℝ+)
21 rsp 3230 . . . . . 6 (∀𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) → (𝑑 ∈ ℝ+ → ∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
2219, 20, 21sylc 65 . . . . 5 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
23 eqid 2736 . . . . . . . . . 10 if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦)
245ad3antrrr 728 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑋 ⊆ ℝ)
257ad3antrrr 728 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝐹:𝑋⟶ℂ)
263, 7, 5dvbss 25265 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → dom (ℝ D 𝐹) ⊆ 𝑋)
27 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → 𝐴 ∈ dom (ℝ D 𝐹))
2826, 27sseldd 3945 . . . . . . . . . . . . 13 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → 𝐴𝑋)
2928adantr 481 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝐴𝑋)
3029adantr 481 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) → 𝐴𝑋)
3130adantr 481 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝐴𝑋)
3217ad2antrr 724 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑐 ∈ ℝ+)
3320ad2antrr 724 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑑 ∈ ℝ+)
34 simplrl 775 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑥𝑋)
35 simplrr 776 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑦𝑋)
36 simpr2r 1233 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑥𝑦)
37 simpr1l 1230 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑥𝐴)
38 simpr1r 1231 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝐴𝑦)
39 simpr2l 1232 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → (𝑦𝑥) < 𝑑)
40 simpr3 1196 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))
411, 23, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40unbdqndv2lem2 34973 . . . . . . . . 9 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → (if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦))))))
4241simpld 495 . . . . . . . 8 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) ∈ (𝑋 ∖ {𝐴}))
43 fvoveq1 7380 . . . . . . . . . . 11 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → (abs‘(𝑤𝐴)) = (abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)))
4443breq1d 5115 . . . . . . . . . 10 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → ((abs‘(𝑤𝐴)) < 𝑑 ↔ (abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑))
45 2fveq3 6847 . . . . . . . . . . 11 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤)) = (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦))))
4645breq2d 5117 . . . . . . . . . 10 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → (𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤)) ↔ 𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦)))))
4744, 46anbi12d 631 . . . . . . . . 9 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → (((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))) ↔ ((abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦))))))
4847adantl 482 . . . . . . . 8 ((((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) ∧ 𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦)) → (((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))) ↔ ((abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦))))))
4941simprd 496 . . . . . . . 8 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → ((abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦)))))
5042, 48, 49rspcedvd 3583 . . . . . . 7 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))))
5150ex 413 . . . . . 6 ((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤)))))
5251rexlimdvva 3205 . . . . 5 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤)))))
5322, 52mpd 15 . . . 4 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))))
5453ralrimivva 3197 . . 3 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → ∀𝑐 ∈ ℝ+𝑑 ∈ ℝ+𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))))
551, 3, 5, 7, 54unbdqndv1 34971 . 2 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → ¬ 𝐴 ∈ dom (ℝ D 𝐹))
5655pm2.01da 797 1 (𝜑 → ¬ 𝐴 ∈ dom (ℝ D 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  cdif 3907  wss 3910  ifcif 4486  {csn 4586   class class class wbr 5105  cmpt 5188  dom cdm 5633  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  2c2 12208  +crp 12915  abscabs 15119   D cdv 25227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-rest 17304  df-topn 17305  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-ntr 22371  df-cnp 22579  df-xms 23673  df-ms 23674  df-limc 25230  df-dv 25231
This theorem is referenced by:  knoppndv  34997
  Copyright terms: Public domain W3C validator