Step | Hyp | Ref
| Expression |
1 | | eqid 2737 |
. . 3
⊢ (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴))) = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴))) |
2 | | ax-resscn 10786 |
. . . 4
⊢ ℝ
⊆ ℂ |
3 | 2 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) → ℝ ⊆
ℂ) |
4 | | unbdqndv2.x |
. . . 4
⊢ (𝜑 → 𝑋 ⊆ ℝ) |
5 | 4 | adantr 484 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) → 𝑋 ⊆ ℝ) |
6 | | unbdqndv2.f |
. . . 4
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
7 | 6 | adantr 484 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) → 𝐹:𝑋⟶ℂ) |
8 | | breq1 5056 |
. . . . . . . . . . 11
⊢ (𝑏 = (2 · 𝑐) → (𝑏 ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)) ↔ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) |
9 | 8 | 3anbi3d 1444 |
. . . . . . . . . 10
⊢ (𝑏 = (2 · 𝑐) → (((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥))) ↔ ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥))))) |
10 | 9 | rexbidv 3216 |
. . . . . . . . 9
⊢ (𝑏 = (2 · 𝑐) → (∃𝑦 ∈ 𝑋 ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥))) ↔ ∃𝑦 ∈ 𝑋 ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥))))) |
11 | 10 | rexbidv 3216 |
. . . . . . . 8
⊢ (𝑏 = (2 · 𝑐) → (∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥))) ↔ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥))))) |
12 | 11 | ralbidv 3118 |
. . . . . . 7
⊢ (𝑏 = (2 · 𝑐) → (∀𝑑 ∈ ℝ+
∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥))) ↔ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥))))) |
13 | | unbdqndv2.1 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+
∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) |
14 | 13 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
→ ∀𝑏 ∈
ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) |
15 | | 2rp 12591 |
. . . . . . . . 9
⊢ 2 ∈
ℝ+ |
16 | 15 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
→ 2 ∈ ℝ+) |
17 | | simprl 771 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
→ 𝑐 ∈
ℝ+) |
18 | 16, 17 | rpmulcld 12644 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
→ (2 · 𝑐)
∈ ℝ+) |
19 | 12, 14, 18 | rspcdva 3539 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
→ ∀𝑑 ∈
ℝ+ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) |
20 | | simprr 773 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
→ 𝑑 ∈
ℝ+) |
21 | | rsp 3127 |
. . . . . 6
⊢
(∀𝑑 ∈
ℝ+ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥))) → (𝑑 ∈ ℝ+ →
∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥))))) |
22 | 19, 20, 21 | sylc 65 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
→ ∃𝑥 ∈
𝑋 ∃𝑦 ∈ 𝑋 ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) |
23 | | eqid 2737 |
. . . . . . . . . 10
⊢ if((𝑐 · (𝑦 − 𝑥)) ≤ (abs‘((𝐹‘𝑥) − (𝐹‘𝐴))), 𝑥, 𝑦) = if((𝑐 · (𝑦 − 𝑥)) ≤ (abs‘((𝐹‘𝑥) − (𝐹‘𝐴))), 𝑥, 𝑦) |
24 | 5 | ad3antrrr 730 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) → 𝑋 ⊆ ℝ) |
25 | 7 | ad3antrrr 730 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) → 𝐹:𝑋⟶ℂ) |
26 | 3, 7, 5 | dvbss 24798 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) → dom (ℝ D 𝐹) ⊆ 𝑋) |
27 | | simpr 488 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) → 𝐴 ∈ dom (ℝ D 𝐹)) |
28 | 26, 27 | sseldd 3902 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) → 𝐴 ∈ 𝑋) |
29 | 28 | adantr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
→ 𝐴 ∈ 𝑋) |
30 | 29 | adantr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
31 | 30 | adantr 484 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) → 𝐴 ∈ 𝑋) |
32 | 17 | ad2antrr 726 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) → 𝑐 ∈ ℝ+) |
33 | 20 | ad2antrr 726 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) → 𝑑 ∈ ℝ+) |
34 | | simplrl 777 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) → 𝑥 ∈ 𝑋) |
35 | | simplrr 778 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) → 𝑦 ∈ 𝑋) |
36 | | simpr2r 1235 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) → 𝑥 ≠ 𝑦) |
37 | | simpr1l 1232 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) → 𝑥 ≤ 𝐴) |
38 | | simpr1r 1233 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) → 𝐴 ≤ 𝑦) |
39 | | simpr2l 1234 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) → (𝑦 − 𝑥) < 𝑑) |
40 | | simpr3 1198 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) → (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥))) |
41 | 1, 23, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 | unbdqndv2lem2 34427 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) → (if((𝑐 · (𝑦 − 𝑥)) ≤ (abs‘((𝐹‘𝑥) − (𝐹‘𝐴))), 𝑥, 𝑦) ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(if((𝑐 · (𝑦 − 𝑥)) ≤ (abs‘((𝐹‘𝑥) − (𝐹‘𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)))‘if((𝑐 · (𝑦 − 𝑥)) ≤ (abs‘((𝐹‘𝑥) − (𝐹‘𝐴))), 𝑥, 𝑦)))))) |
42 | 41 | simpld 498 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) → if((𝑐 · (𝑦 − 𝑥)) ≤ (abs‘((𝐹‘𝑥) − (𝐹‘𝐴))), 𝑥, 𝑦) ∈ (𝑋 ∖ {𝐴})) |
43 | | fvoveq1 7236 |
. . . . . . . . . . 11
⊢ (𝑤 = if((𝑐 · (𝑦 − 𝑥)) ≤ (abs‘((𝐹‘𝑥) − (𝐹‘𝐴))), 𝑥, 𝑦) → (abs‘(𝑤 − 𝐴)) = (abs‘(if((𝑐 · (𝑦 − 𝑥)) ≤ (abs‘((𝐹‘𝑥) − (𝐹‘𝐴))), 𝑥, 𝑦) − 𝐴))) |
44 | 43 | breq1d 5063 |
. . . . . . . . . 10
⊢ (𝑤 = if((𝑐 · (𝑦 − 𝑥)) ≤ (abs‘((𝐹‘𝑥) − (𝐹‘𝐴))), 𝑥, 𝑦) → ((abs‘(𝑤 − 𝐴)) < 𝑑 ↔ (abs‘(if((𝑐 · (𝑦 − 𝑥)) ≤ (abs‘((𝐹‘𝑥) − (𝐹‘𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑)) |
45 | | 2fveq3 6722 |
. . . . . . . . . . 11
⊢ (𝑤 = if((𝑐 · (𝑦 − 𝑥)) ≤ (abs‘((𝐹‘𝑥) − (𝐹‘𝐴))), 𝑥, 𝑦) → (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)))‘𝑤)) = (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)))‘if((𝑐 · (𝑦 − 𝑥)) ≤ (abs‘((𝐹‘𝑥) − (𝐹‘𝐴))), 𝑥, 𝑦)))) |
46 | 45 | breq2d 5065 |
. . . . . . . . . 10
⊢ (𝑤 = if((𝑐 · (𝑦 − 𝑥)) ≤ (abs‘((𝐹‘𝑥) − (𝐹‘𝐴))), 𝑥, 𝑦) → (𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)))‘𝑤)) ↔ 𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)))‘if((𝑐 · (𝑦 − 𝑥)) ≤ (abs‘((𝐹‘𝑥) − (𝐹‘𝐴))), 𝑥, 𝑦))))) |
47 | 44, 46 | anbi12d 634 |
. . . . . . . . 9
⊢ (𝑤 = if((𝑐 · (𝑦 − 𝑥)) ≤ (abs‘((𝐹‘𝑥) − (𝐹‘𝐴))), 𝑥, 𝑦) → (((abs‘(𝑤 − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)))‘𝑤))) ↔ ((abs‘(if((𝑐 · (𝑦 − 𝑥)) ≤ (abs‘((𝐹‘𝑥) − (𝐹‘𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)))‘if((𝑐 · (𝑦 − 𝑥)) ≤ (abs‘((𝐹‘𝑥) − (𝐹‘𝐴))), 𝑥, 𝑦)))))) |
48 | 47 | adantl 485 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) ∧ 𝑤 = if((𝑐 · (𝑦 − 𝑥)) ≤ (abs‘((𝐹‘𝑥) − (𝐹‘𝐴))), 𝑥, 𝑦)) → (((abs‘(𝑤 − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)))‘𝑤))) ↔ ((abs‘(if((𝑐 · (𝑦 − 𝑥)) ≤ (abs‘((𝐹‘𝑥) − (𝐹‘𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)))‘if((𝑐 · (𝑦 − 𝑥)) ≤ (abs‘((𝐹‘𝑥) − (𝐹‘𝐴))), 𝑥, 𝑦)))))) |
49 | 41 | simprd 499 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) → ((abs‘(if((𝑐 · (𝑦 − 𝑥)) ≤ (abs‘((𝐹‘𝑥) − (𝐹‘𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)))‘if((𝑐 · (𝑦 − 𝑥)) ≤ (abs‘((𝐹‘𝑥) − (𝐹‘𝐴))), 𝑥, 𝑦))))) |
50 | 42, 48, 49 | rspcedvd 3540 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤 − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)))‘𝑤)))) |
51 | 50 | ex 416 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥))) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤 − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)))‘𝑤))))) |
52 | 51 | rexlimdvva 3213 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
→ (∃𝑥 ∈
𝑋 ∃𝑦 ∈ 𝑋 ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥))) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤 − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)))‘𝑤))))) |
53 | 22, 52 | mpd 15 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
→ ∃𝑤 ∈
(𝑋 ∖ {𝐴})((abs‘(𝑤 − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)))‘𝑤)))) |
54 | 53 | ralrimivva 3112 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) → ∀𝑐 ∈ ℝ+ ∀𝑑 ∈ ℝ+
∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤 − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)))‘𝑤)))) |
55 | 1, 3, 5, 7, 54 | unbdqndv1 34425 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ dom (ℝ D 𝐹)) → ¬ 𝐴 ∈ dom (ℝ D 𝐹)) |
56 | 55 | pm2.01da 799 |
1
⊢ (𝜑 → ¬ 𝐴 ∈ dom (ℝ D 𝐹)) |