Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unbdqndv2 Structured version   Visualization version   GIF version

Theorem unbdqndv2 36524
Description: Variant of unbdqndv1 36521 with the hypothesis that (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) is unbounded where 𝑥𝐴 and 𝐴𝑦. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unbdqndv2.x (𝜑𝑋 ⊆ ℝ)
unbdqndv2.f (𝜑𝐹:𝑋⟶ℂ)
unbdqndv2.1 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
Assertion
Ref Expression
unbdqndv2 (𝜑 → ¬ 𝐴 ∈ dom (ℝ D 𝐹))
Distinct variable groups:   𝐴,𝑏,𝑑,𝑥,𝑦   𝐹,𝑏,𝑑,𝑥,𝑦   𝑋,𝑏,𝑑,𝑥,𝑦   𝜑,𝑏,𝑑,𝑥,𝑦

Proof of Theorem unbdqndv2
Dummy variables 𝑐 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴))) = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))
2 ax-resscn 11055 . . . 4 ℝ ⊆ ℂ
32a1i 11 . . 3 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → ℝ ⊆ ℂ)
4 unbdqndv2.x . . . 4 (𝜑𝑋 ⊆ ℝ)
54adantr 480 . . 3 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → 𝑋 ⊆ ℝ)
6 unbdqndv2.f . . . 4 (𝜑𝐹:𝑋⟶ℂ)
76adantr 480 . . 3 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → 𝐹:𝑋⟶ℂ)
8 breq1 5092 . . . . . . . . . . 11 (𝑏 = (2 · 𝑐) → (𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)) ↔ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
983anbi3d 1444 . . . . . . . . . 10 (𝑏 = (2 · 𝑐) → (((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) ↔ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
109rexbidv 3154 . . . . . . . . 9 (𝑏 = (2 · 𝑐) → (∃𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) ↔ ∃𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
1110rexbidv 3154 . . . . . . . 8 (𝑏 = (2 · 𝑐) → (∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) ↔ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
1211ralbidv 3153 . . . . . . 7 (𝑏 = (2 · 𝑐) → (∀𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) ↔ ∀𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
13 unbdqndv2.1 . . . . . . . 8 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
1413ad2antrr 726 . . . . . . 7 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
15 2rp 12887 . . . . . . . . 9 2 ∈ ℝ+
1615a1i 11 . . . . . . . 8 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 2 ∈ ℝ+)
17 simprl 770 . . . . . . . 8 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑐 ∈ ℝ+)
1816, 17rpmulcld 12942 . . . . . . 7 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (2 · 𝑐) ∈ ℝ+)
1912, 14, 18rspcdva 3576 . . . . . 6 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∀𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
20 simprr 772 . . . . . 6 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑑 ∈ ℝ+)
21 rsp 3218 . . . . . 6 (∀𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) → (𝑑 ∈ ℝ+ → ∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
2219, 20, 21sylc 65 . . . . 5 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
23 eqid 2730 . . . . . . . . . 10 if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦)
245ad3antrrr 730 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑋 ⊆ ℝ)
257ad3antrrr 730 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝐹:𝑋⟶ℂ)
263, 7, 5dvbss 25822 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → dom (ℝ D 𝐹) ⊆ 𝑋)
27 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → 𝐴 ∈ dom (ℝ D 𝐹))
2826, 27sseldd 3933 . . . . . . . . . . . . 13 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → 𝐴𝑋)
2928adantr 480 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝐴𝑋)
3029adantr 480 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) → 𝐴𝑋)
3130adantr 480 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝐴𝑋)
3217ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑐 ∈ ℝ+)
3320ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑑 ∈ ℝ+)
34 simplrl 776 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑥𝑋)
35 simplrr 777 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑦𝑋)
36 simpr2r 1234 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑥𝑦)
37 simpr1l 1231 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑥𝐴)
38 simpr1r 1232 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝐴𝑦)
39 simpr2l 1233 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → (𝑦𝑥) < 𝑑)
40 simpr3 1197 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))
411, 23, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40unbdqndv2lem2 36523 . . . . . . . . 9 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → (if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦))))))
4241simpld 494 . . . . . . . 8 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) ∈ (𝑋 ∖ {𝐴}))
43 fvoveq1 7364 . . . . . . . . . . 11 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → (abs‘(𝑤𝐴)) = (abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)))
4443breq1d 5099 . . . . . . . . . 10 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → ((abs‘(𝑤𝐴)) < 𝑑 ↔ (abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑))
45 2fveq3 6822 . . . . . . . . . . 11 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤)) = (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦))))
4645breq2d 5101 . . . . . . . . . 10 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → (𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤)) ↔ 𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦)))))
4744, 46anbi12d 632 . . . . . . . . 9 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → (((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))) ↔ ((abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦))))))
4847adantl 481 . . . . . . . 8 ((((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) ∧ 𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦)) → (((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))) ↔ ((abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦))))))
4941simprd 495 . . . . . . . 8 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → ((abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦)))))
5042, 48, 49rspcedvd 3577 . . . . . . 7 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))))
5150ex 412 . . . . . 6 ((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤)))))
5251rexlimdvva 3187 . . . . 5 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤)))))
5322, 52mpd 15 . . . 4 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))))
5453ralrimivva 3173 . . 3 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → ∀𝑐 ∈ ℝ+𝑑 ∈ ℝ+𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))))
551, 3, 5, 7, 54unbdqndv1 36521 . 2 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → ¬ 𝐴 ∈ dom (ℝ D 𝐹))
5655pm2.01da 798 1 (𝜑 → ¬ 𝐴 ∈ dom (ℝ D 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926  wral 3045  wrex 3054  cdif 3897  wss 3900  ifcif 4473  {csn 4574   class class class wbr 5089  cmpt 5170  dom cdm 5614  wf 6473  cfv 6477  (class class class)co 7341  cc 10996  cr 10997   · cmul 11003   < clt 11138  cle 11139  cmin 11336   / cdiv 11766  2c2 12172  +crp 12882  abscabs 15133   D cdv 25784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fi 9290  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-fz 13400  df-seq 13901  df-exp 13961  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-struct 17050  df-slot 17085  df-ndx 17097  df-base 17113  df-plusg 17166  df-mulr 17167  df-starv 17168  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-rest 17318  df-topn 17319  df-topgen 17339  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-cnfld 21285  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-ntr 22928  df-cnp 23136  df-xms 24228  df-ms 24229  df-limc 25787  df-dv 25788
This theorem is referenced by:  knoppndv  36547
  Copyright terms: Public domain W3C validator