Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrelog2b Structured version   Visualization version   GIF version

Theorem dvrelog2b 40002
Description: Derivative of the binary logarithm. (Contributed by metakunt, 11-Aug-2024.)
Hypotheses
Ref Expression
dvrelog2b.1 (𝜑𝐴 ∈ ℝ*)
dvrelog2b.2 (𝜑𝐵 ∈ ℝ*)
dvrelog2b.3 (𝜑 → 0 ≤ 𝐴)
dvrelog2b.4 (𝜑𝐴𝐵)
dvrelog2b.5 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))
dvrelog2b.6 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2))))
Assertion
Ref Expression
dvrelog2b (𝜑 → (ℝ D 𝐹) = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem dvrelog2b
StepHypRef Expression
1 dvrelog2b.5 . . . . 5 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))
21a1i 11 . . . 4 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥)))
3 2cnd 11981 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
4 2ne0 12007 . . . . . . . . 9 2 ≠ 0
54a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
6 1red 10907 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
7 1lt2 12074 . . . . . . . . . . 11 1 < 2
87a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 < 2)
96, 8ltned 11041 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ≠ 2)
109necomd 2998 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 1)
115, 10nelprd 4589 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 2 ∈ {0, 1})
123, 11eldifd 3894 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ (ℂ ∖ {0, 1}))
13 elioore 13038 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
14 recn 10892 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
1513, 14syl 17 . . . . . . . 8 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℂ)
1615adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℂ)
17 elsni 4575 . . . . . . . . . . 11 (𝑥 ∈ {0} → 𝑥 = 0)
18 dvrelog2b.3 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ 𝐴)
19 0xr 10953 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ*
2019a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ∈ ℝ*)
21 dvrelog2b.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ ℝ*)
22 xrlenlt 10971 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ*𝐴 ∈ ℝ*) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
2320, 21, 22syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
2418, 23mpbid 231 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ 𝐴 < 0)
2524orcd 869 . . . . . . . . . . . . . . . . . 18 (𝜑 → (¬ 𝐴 < 0 ∨ ¬ 0 < 𝐵))
26 ianor 978 . . . . . . . . . . . . . . . . . 18 (¬ (𝐴 < 0 ∧ 0 < 𝐵) ↔ (¬ 𝐴 < 0 ∨ ¬ 0 < 𝐵))
2725, 26sylibr 233 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ (𝐴 < 0 ∧ 0 < 𝐵))
28 dvrelog2b.2 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℝ*)
29 elioo5 13065 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ 0 ∈ ℝ*) → (0 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 0 ∧ 0 < 𝐵)))
3021, 28, 20, 29syl3anc 1369 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 0 ∧ 0 < 𝐵)))
3130notbid 317 . . . . . . . . . . . . . . . . 17 (𝜑 → (¬ 0 ∈ (𝐴(,)𝐵) ↔ ¬ (𝐴 < 0 ∧ 0 < 𝐵)))
3227, 31mpbird 256 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
3332a1d 25 . . . . . . . . . . . . . . 15 (𝜑 → (0 ∈ (𝐴(,)𝐵) → ¬ 0 ∈ (𝐴(,)𝐵)))
3433imp 406 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ (𝐴(,)𝐵))
3534pm2.01da 795 . . . . . . . . . . . . 13 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
3635adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 = 0) → ¬ 0 ∈ (𝐴(,)𝐵))
37 eleq1 2826 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 0 ∈ (𝐴(,)𝐵)))
3837adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 = 0) → (𝑥 ∈ (𝐴(,)𝐵) ↔ 0 ∈ (𝐴(,)𝐵)))
3936, 38mtbird 324 . . . . . . . . . . 11 ((𝜑𝑥 = 0) → ¬ 𝑥 ∈ (𝐴(,)𝐵))
4017, 39sylan2 592 . . . . . . . . . 10 ((𝜑𝑥 ∈ {0}) → ¬ 𝑥 ∈ (𝐴(,)𝐵))
4140ex 412 . . . . . . . . 9 (𝜑 → (𝑥 ∈ {0} → ¬ 𝑥 ∈ (𝐴(,)𝐵)))
4241con2d 134 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 ∈ {0}))
4342imp 406 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 ∈ {0})
4416, 43eldifd 3894 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (ℂ ∖ {0}))
45 logbval 25821 . . . . . 6 ((2 ∈ (ℂ ∖ {0, 1}) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (2 logb 𝑥) = ((log‘𝑥) / (log‘2)))
4612, 44, 45syl2anc 583 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 𝑥) = ((log‘𝑥) / (log‘2)))
4746mpteq2dva 5170 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((log‘𝑥) / (log‘2))))
482, 47eqtrd 2778 . . 3 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((log‘𝑥) / (log‘2))))
4948oveq2d 7271 . 2 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((log‘𝑥) / (log‘2)))))
50 reelprrecn 10894 . . . . 5 ℝ ∈ {ℝ, ℂ}
5150a1i 11 . . . 4 (𝜑 → ℝ ∈ {ℝ, ℂ})
5239ex 412 . . . . . . . 8 (𝜑 → (𝑥 = 0 → ¬ 𝑥 ∈ (𝐴(,)𝐵)))
5352con2d 134 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 = 0))
54 biidd 261 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) → (𝑥 = 0 ↔ 𝑥 = 0))
5554necon3bbid 2980 . . . . . . . 8 (𝑥 ∈ (𝐴(,)𝐵) → (¬ 𝑥 = 0 ↔ 𝑥 ≠ 0))
5655pm5.74i 270 . . . . . . 7 ((𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 = 0) ↔ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ≠ 0))
5753, 56sylib 217 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ≠ 0))
5857imp 406 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0)
5916, 58logcld 25631 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘𝑥) ∈ ℂ)
6013adantl 481 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
616, 60, 58redivcld 11733 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (1 / 𝑥) ∈ ℝ)
62 dvrelog2b.4 . . . . 5 (𝜑𝐴𝐵)
63 eqid 2738 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥))
64 eqid 2738 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))
6521, 28, 18, 62, 63, 64dvrelog3 40001 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)))
66 2cnd 11981 . . . . 5 (𝜑 → 2 ∈ ℂ)
674a1i 11 . . . . 5 (𝜑 → 2 ≠ 0)
6866, 67logcld 25631 . . . 4 (𝜑 → (log‘2) ∈ ℂ)
69 0red 10909 . . . . . 6 (𝜑 → 0 ∈ ℝ)
70 2rp 12664 . . . . . . . . 9 2 ∈ ℝ+
71 loggt0b 25692 . . . . . . . . 9 (2 ∈ ℝ+ → (0 < (log‘2) ↔ 1 < 2))
7270, 71ax-mp 5 . . . . . . . 8 (0 < (log‘2) ↔ 1 < 2)
737, 72mpbir 230 . . . . . . 7 0 < (log‘2)
7473a1i 11 . . . . . 6 (𝜑 → 0 < (log‘2))
7569, 74ltned 11041 . . . . 5 (𝜑 → 0 ≠ (log‘2))
7675necomd 2998 . . . 4 (𝜑 → (log‘2) ≠ 0)
7751, 59, 61, 65, 68, 76dvmptdivc 25034 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((log‘𝑥) / (log‘2)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((1 / 𝑥) / (log‘2))))
783, 5logcld 25631 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℂ)
7976adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ≠ 0)
8016, 78, 58, 79recdiv2d 11699 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((1 / 𝑥) / (log‘2)) = (1 / (𝑥 · (log‘2))))
8180mpteq2dva 5170 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((1 / 𝑥) / (log‘2))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))))
82 dvrelog2b.6 . . . . . 6 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2))))
8382a1i 11 . . . . 5 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))))
8483eqcomd 2744 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))) = 𝐺)
8581, 84eqtrd 2778 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((1 / 𝑥) / (log‘2))) = 𝐺)
8677, 85eqtrd 2778 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((log‘𝑥) / (log‘2)))) = 𝐺)
8749, 86eqtrd 2778 1 (𝜑 → (ℝ D 𝐹) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  cdif 3880  {csn 4558  {cpr 4560   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807  *cxr 10939   < clt 10940  cle 10941   / cdiv 11562  2c2 11958  +crp 12659  (,)cioo 13008   D cdv 24932  logclog 25615   logb clogb 25819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-logb 25820
This theorem is referenced by:  dvrelogpow2b  40004  aks4d1p1p6  40009
  Copyright terms: Public domain W3C validator