Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrelog2b Structured version   Visualization version   GIF version

Theorem dvrelog2b 42079
Description: Derivative of the binary logarithm. (Contributed by metakunt, 11-Aug-2024.)
Hypotheses
Ref Expression
dvrelog2b.1 (𝜑𝐴 ∈ ℝ*)
dvrelog2b.2 (𝜑𝐵 ∈ ℝ*)
dvrelog2b.3 (𝜑 → 0 ≤ 𝐴)
dvrelog2b.4 (𝜑𝐴𝐵)
dvrelog2b.5 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))
dvrelog2b.6 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2))))
Assertion
Ref Expression
dvrelog2b (𝜑 → (ℝ D 𝐹) = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem dvrelog2b
StepHypRef Expression
1 dvrelog2b.5 . . . . 5 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))
21a1i 11 . . . 4 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥)))
3 2cnd 12318 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
4 2ne0 12344 . . . . . . . . 9 2 ≠ 0
54a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
6 1red 11236 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
7 1lt2 12411 . . . . . . . . . . 11 1 < 2
87a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 < 2)
96, 8ltned 11371 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ≠ 2)
109necomd 2987 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 1)
115, 10nelprd 4633 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 2 ∈ {0, 1})
123, 11eldifd 3937 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ (ℂ ∖ {0, 1}))
13 elioore 13392 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
14 recn 11219 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
1513, 14syl 17 . . . . . . . 8 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℂ)
1615adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℂ)
17 elsni 4618 . . . . . . . . . . 11 (𝑥 ∈ {0} → 𝑥 = 0)
18 dvrelog2b.3 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ 𝐴)
19 0xr 11282 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ*
2019a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ∈ ℝ*)
21 dvrelog2b.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ ℝ*)
22 xrlenlt 11300 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ*𝐴 ∈ ℝ*) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
2320, 21, 22syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
2418, 23mpbid 232 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ 𝐴 < 0)
2524orcd 873 . . . . . . . . . . . . . . . . . 18 (𝜑 → (¬ 𝐴 < 0 ∨ ¬ 0 < 𝐵))
26 ianor 983 . . . . . . . . . . . . . . . . . 18 (¬ (𝐴 < 0 ∧ 0 < 𝐵) ↔ (¬ 𝐴 < 0 ∨ ¬ 0 < 𝐵))
2725, 26sylibr 234 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ (𝐴 < 0 ∧ 0 < 𝐵))
28 dvrelog2b.2 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℝ*)
29 elioo5 13420 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ 0 ∈ ℝ*) → (0 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 0 ∧ 0 < 𝐵)))
3021, 28, 20, 29syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 0 ∧ 0 < 𝐵)))
3130notbid 318 . . . . . . . . . . . . . . . . 17 (𝜑 → (¬ 0 ∈ (𝐴(,)𝐵) ↔ ¬ (𝐴 < 0 ∧ 0 < 𝐵)))
3227, 31mpbird 257 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
3332a1d 25 . . . . . . . . . . . . . . 15 (𝜑 → (0 ∈ (𝐴(,)𝐵) → ¬ 0 ∈ (𝐴(,)𝐵)))
3433imp 406 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ (𝐴(,)𝐵))
3534pm2.01da 798 . . . . . . . . . . . . 13 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
3635adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 = 0) → ¬ 0 ∈ (𝐴(,)𝐵))
37 eleq1 2822 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 0 ∈ (𝐴(,)𝐵)))
3837adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 = 0) → (𝑥 ∈ (𝐴(,)𝐵) ↔ 0 ∈ (𝐴(,)𝐵)))
3936, 38mtbird 325 . . . . . . . . . . 11 ((𝜑𝑥 = 0) → ¬ 𝑥 ∈ (𝐴(,)𝐵))
4017, 39sylan2 593 . . . . . . . . . 10 ((𝜑𝑥 ∈ {0}) → ¬ 𝑥 ∈ (𝐴(,)𝐵))
4140ex 412 . . . . . . . . 9 (𝜑 → (𝑥 ∈ {0} → ¬ 𝑥 ∈ (𝐴(,)𝐵)))
4241con2d 134 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 ∈ {0}))
4342imp 406 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 ∈ {0})
4416, 43eldifd 3937 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (ℂ ∖ {0}))
45 logbval 26728 . . . . . 6 ((2 ∈ (ℂ ∖ {0, 1}) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (2 logb 𝑥) = ((log‘𝑥) / (log‘2)))
4612, 44, 45syl2anc 584 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 𝑥) = ((log‘𝑥) / (log‘2)))
4746mpteq2dva 5214 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((log‘𝑥) / (log‘2))))
482, 47eqtrd 2770 . . 3 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((log‘𝑥) / (log‘2))))
4948oveq2d 7421 . 2 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((log‘𝑥) / (log‘2)))))
50 reelprrecn 11221 . . . . 5 ℝ ∈ {ℝ, ℂ}
5150a1i 11 . . . 4 (𝜑 → ℝ ∈ {ℝ, ℂ})
5239ex 412 . . . . . . . 8 (𝜑 → (𝑥 = 0 → ¬ 𝑥 ∈ (𝐴(,)𝐵)))
5352con2d 134 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 = 0))
54 biidd 262 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) → (𝑥 = 0 ↔ 𝑥 = 0))
5554necon3bbid 2969 . . . . . . . 8 (𝑥 ∈ (𝐴(,)𝐵) → (¬ 𝑥 = 0 ↔ 𝑥 ≠ 0))
5655pm5.74i 271 . . . . . . 7 ((𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 = 0) ↔ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ≠ 0))
5753, 56sylib 218 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ≠ 0))
5857imp 406 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0)
5916, 58logcld 26531 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘𝑥) ∈ ℂ)
6013adantl 481 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
616, 60, 58redivcld 12069 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (1 / 𝑥) ∈ ℝ)
62 dvrelog2b.4 . . . . 5 (𝜑𝐴𝐵)
63 eqid 2735 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥))
64 eqid 2735 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))
6521, 28, 18, 62, 63, 64dvrelog3 42078 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)))
66 2cnd 12318 . . . . 5 (𝜑 → 2 ∈ ℂ)
674a1i 11 . . . . 5 (𝜑 → 2 ≠ 0)
6866, 67logcld 26531 . . . 4 (𝜑 → (log‘2) ∈ ℂ)
69 0red 11238 . . . . . 6 (𝜑 → 0 ∈ ℝ)
70 2rp 13013 . . . . . . . . 9 2 ∈ ℝ+
71 loggt0b 26593 . . . . . . . . 9 (2 ∈ ℝ+ → (0 < (log‘2) ↔ 1 < 2))
7270, 71ax-mp 5 . . . . . . . 8 (0 < (log‘2) ↔ 1 < 2)
737, 72mpbir 231 . . . . . . 7 0 < (log‘2)
7473a1i 11 . . . . . 6 (𝜑 → 0 < (log‘2))
7569, 74ltned 11371 . . . . 5 (𝜑 → 0 ≠ (log‘2))
7675necomd 2987 . . . 4 (𝜑 → (log‘2) ≠ 0)
7751, 59, 61, 65, 68, 76dvmptdivc 25921 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((log‘𝑥) / (log‘2)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((1 / 𝑥) / (log‘2))))
783, 5logcld 26531 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℂ)
7976adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ≠ 0)
8016, 78, 58, 79recdiv2d 12035 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((1 / 𝑥) / (log‘2)) = (1 / (𝑥 · (log‘2))))
8180mpteq2dva 5214 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((1 / 𝑥) / (log‘2))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))))
82 dvrelog2b.6 . . . . . 6 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2))))
8382a1i 11 . . . . 5 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))))
8483eqcomd 2741 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))) = 𝐺)
8581, 84eqtrd 2770 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((1 / 𝑥) / (log‘2))) = 𝐺)
8677, 85eqtrd 2770 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((log‘𝑥) / (log‘2)))) = 𝐺)
8749, 86eqtrd 2770 1 (𝜑 → (ℝ D 𝐹) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  cdif 3923  {csn 4601  {cpr 4603   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   · cmul 11134  *cxr 11268   < clt 11269  cle 11270   / cdiv 11894  2c2 12295  +crp 13008  (,)cioo 13362   D cdv 25816  logclog 26515   logb clogb 26726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-cmp 23325  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517  df-logb 26727
This theorem is referenced by:  dvrelogpow2b  42081  aks4d1p1p6  42086
  Copyright terms: Public domain W3C validator