Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrelog2b Structured version   Visualization version   GIF version

Theorem dvrelog2b 39666
Description: Derivative of the binary logarithm. (Contributed by metakunt, 11-Aug-2024.)
Hypotheses
Ref Expression
dvrelog2b.1 (𝜑𝐴 ∈ ℝ*)
dvrelog2b.2 (𝜑𝐵 ∈ ℝ*)
dvrelog2b.3 (𝜑 → 0 ≤ 𝐴)
dvrelog2b.4 (𝜑𝐴𝐵)
dvrelog2b.5 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))
dvrelog2b.6 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2))))
Assertion
Ref Expression
dvrelog2b (𝜑 → (ℝ D 𝐹) = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem dvrelog2b
StepHypRef Expression
1 dvrelog2b.5 . . . . 5 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))
21a1i 11 . . . 4 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥)))
3 2cnd 11765 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
4 2ne0 11791 . . . . . . . . 9 2 ≠ 0
54a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
6 1red 10693 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
7 1lt2 11858 . . . . . . . . . . 11 1 < 2
87a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 < 2)
96, 8ltned 10827 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ≠ 2)
109necomd 3006 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 1)
115, 10nelprd 4556 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 2 ∈ {0, 1})
123, 11eldifd 3871 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ (ℂ ∖ {0, 1}))
13 elioore 12822 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
14 recn 10678 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
1513, 14syl 17 . . . . . . . 8 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℂ)
1615adantl 485 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℂ)
17 elsni 4542 . . . . . . . . . . 11 (𝑥 ∈ {0} → 𝑥 = 0)
18 dvrelog2b.3 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ 𝐴)
19 0xr 10739 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ*
2019a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ∈ ℝ*)
21 dvrelog2b.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ ℝ*)
22 xrlenlt 10757 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ*𝐴 ∈ ℝ*) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
2320, 21, 22syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
2418, 23mpbid 235 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ 𝐴 < 0)
2524orcd 870 . . . . . . . . . . . . . . . . . 18 (𝜑 → (¬ 𝐴 < 0 ∨ ¬ 0 < 𝐵))
26 ianor 979 . . . . . . . . . . . . . . . . . 18 (¬ (𝐴 < 0 ∧ 0 < 𝐵) ↔ (¬ 𝐴 < 0 ∨ ¬ 0 < 𝐵))
2725, 26sylibr 237 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ (𝐴 < 0 ∧ 0 < 𝐵))
28 dvrelog2b.2 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℝ*)
29 elioo5 12849 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ 0 ∈ ℝ*) → (0 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 0 ∧ 0 < 𝐵)))
3021, 28, 20, 29syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 0 ∧ 0 < 𝐵)))
3130notbid 321 . . . . . . . . . . . . . . . . 17 (𝜑 → (¬ 0 ∈ (𝐴(,)𝐵) ↔ ¬ (𝐴 < 0 ∧ 0 < 𝐵)))
3227, 31mpbird 260 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
3332a1d 25 . . . . . . . . . . . . . . 15 (𝜑 → (0 ∈ (𝐴(,)𝐵) → ¬ 0 ∈ (𝐴(,)𝐵)))
3433imp 410 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ (𝐴(,)𝐵))
3534pm2.01da 798 . . . . . . . . . . . . 13 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
3635adantr 484 . . . . . . . . . . . 12 ((𝜑𝑥 = 0) → ¬ 0 ∈ (𝐴(,)𝐵))
37 eleq1 2839 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 0 ∈ (𝐴(,)𝐵)))
3837adantl 485 . . . . . . . . . . . 12 ((𝜑𝑥 = 0) → (𝑥 ∈ (𝐴(,)𝐵) ↔ 0 ∈ (𝐴(,)𝐵)))
3936, 38mtbird 328 . . . . . . . . . . 11 ((𝜑𝑥 = 0) → ¬ 𝑥 ∈ (𝐴(,)𝐵))
4017, 39sylan2 595 . . . . . . . . . 10 ((𝜑𝑥 ∈ {0}) → ¬ 𝑥 ∈ (𝐴(,)𝐵))
4140ex 416 . . . . . . . . 9 (𝜑 → (𝑥 ∈ {0} → ¬ 𝑥 ∈ (𝐴(,)𝐵)))
4241con2d 136 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 ∈ {0}))
4342imp 410 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 ∈ {0})
4416, 43eldifd 3871 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (ℂ ∖ {0}))
45 logbval 25464 . . . . . 6 ((2 ∈ (ℂ ∖ {0, 1}) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (2 logb 𝑥) = ((log‘𝑥) / (log‘2)))
4612, 44, 45syl2anc 587 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 𝑥) = ((log‘𝑥) / (log‘2)))
4746mpteq2dva 5131 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((log‘𝑥) / (log‘2))))
482, 47eqtrd 2793 . . 3 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((log‘𝑥) / (log‘2))))
4948oveq2d 7172 . 2 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((log‘𝑥) / (log‘2)))))
50 reelprrecn 10680 . . . . 5 ℝ ∈ {ℝ, ℂ}
5150a1i 11 . . . 4 (𝜑 → ℝ ∈ {ℝ, ℂ})
5239ex 416 . . . . . . . 8 (𝜑 → (𝑥 = 0 → ¬ 𝑥 ∈ (𝐴(,)𝐵)))
5352con2d 136 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 = 0))
54 biidd 265 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) → (𝑥 = 0 ↔ 𝑥 = 0))
5554necon3bbid 2988 . . . . . . . 8 (𝑥 ∈ (𝐴(,)𝐵) → (¬ 𝑥 = 0 ↔ 𝑥 ≠ 0))
5655pm5.74i 274 . . . . . . 7 ((𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 = 0) ↔ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ≠ 0))
5753, 56sylib 221 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ≠ 0))
5857imp 410 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0)
5916, 58logcld 25274 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘𝑥) ∈ ℂ)
6013adantl 485 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
616, 60, 58redivcld 11519 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (1 / 𝑥) ∈ ℝ)
62 dvrelog2b.4 . . . . 5 (𝜑𝐴𝐵)
63 eqid 2758 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥))
64 eqid 2758 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))
6521, 28, 18, 62, 63, 64dvrelog3 39665 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)))
66 2cnd 11765 . . . . 5 (𝜑 → 2 ∈ ℂ)
674a1i 11 . . . . 5 (𝜑 → 2 ≠ 0)
6866, 67logcld 25274 . . . 4 (𝜑 → (log‘2) ∈ ℂ)
69 0red 10695 . . . . . 6 (𝜑 → 0 ∈ ℝ)
70 2rp 12448 . . . . . . . . 9 2 ∈ ℝ+
71 loggt0b 25335 . . . . . . . . 9 (2 ∈ ℝ+ → (0 < (log‘2) ↔ 1 < 2))
7270, 71ax-mp 5 . . . . . . . 8 (0 < (log‘2) ↔ 1 < 2)
737, 72mpbir 234 . . . . . . 7 0 < (log‘2)
7473a1i 11 . . . . . 6 (𝜑 → 0 < (log‘2))
7569, 74ltned 10827 . . . . 5 (𝜑 → 0 ≠ (log‘2))
7675necomd 3006 . . . 4 (𝜑 → (log‘2) ≠ 0)
7751, 59, 61, 65, 68, 76dvmptdivc 24677 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((log‘𝑥) / (log‘2)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((1 / 𝑥) / (log‘2))))
783, 5logcld 25274 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℂ)
7976adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ≠ 0)
8016, 78, 58, 79recdiv2d 11485 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((1 / 𝑥) / (log‘2)) = (1 / (𝑥 · (log‘2))))
8180mpteq2dva 5131 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((1 / 𝑥) / (log‘2))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))))
82 dvrelog2b.6 . . . . . 6 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2))))
8382a1i 11 . . . . 5 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))))
8483eqcomd 2764 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))) = 𝐺)
8581, 84eqtrd 2793 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((1 / 𝑥) / (log‘2))) = 𝐺)
8677, 85eqtrd 2793 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((log‘𝑥) / (log‘2)))) = 𝐺)
8749, 86eqtrd 2793 1 (𝜑 → (ℝ D 𝐹) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2951  cdif 3857  {csn 4525  {cpr 4527   class class class wbr 5036  cmpt 5116  cfv 6340  (class class class)co 7156  cc 10586  cr 10587  0cc0 10588  1c1 10589   · cmul 10593  *cxr 10725   < clt 10726  cle 10727   / cdiv 11348  2c2 11742  +crp 12443  (,)cioo 12792   D cdv 24575  logclog 25258   logb clogb 25462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-inf2 9150  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666  ax-addf 10667  ax-mulf 10668
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7411  df-om 7586  df-1st 7699  df-2nd 7700  df-supp 7842  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-2o 8119  df-er 8305  df-map 8424  df-pm 8425  df-ixp 8493  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-fsupp 8880  df-fi 8921  df-sup 8952  df-inf 8953  df-oi 9020  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-dec 12151  df-uz 12296  df-q 12402  df-rp 12444  df-xneg 12561  df-xadd 12562  df-xmul 12563  df-ioo 12796  df-ioc 12797  df-ico 12798  df-icc 12799  df-fz 12953  df-fzo 13096  df-fl 13224  df-mod 13300  df-seq 13432  df-exp 13493  df-fac 13697  df-bc 13726  df-hash 13754  df-shft 14487  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-limsup 14889  df-clim 14906  df-rlim 14907  df-sum 15104  df-ef 15482  df-sin 15484  df-cos 15485  df-pi 15487  df-struct 16556  df-ndx 16557  df-slot 16558  df-base 16560  df-sets 16561  df-ress 16562  df-plusg 16649  df-mulr 16650  df-starv 16651  df-sca 16652  df-vsca 16653  df-ip 16654  df-tset 16655  df-ple 16656  df-ds 16658  df-unif 16659  df-hom 16660  df-cco 16661  df-rest 16767  df-topn 16768  df-0g 16786  df-gsum 16787  df-topgen 16788  df-pt 16789  df-prds 16792  df-xrs 16846  df-qtop 16851  df-imas 16852  df-xps 16854  df-mre 16928  df-mrc 16929  df-acs 16931  df-mgm 17931  df-sgrp 17980  df-mnd 17991  df-submnd 18036  df-mulg 18305  df-cntz 18527  df-cmn 18988  df-psmet 20171  df-xmet 20172  df-met 20173  df-bl 20174  df-mopn 20175  df-fbas 20176  df-fg 20177  df-cnfld 20180  df-top 21607  df-topon 21624  df-topsp 21646  df-bases 21659  df-cld 21732  df-ntr 21733  df-cls 21734  df-nei 21811  df-lp 21849  df-perf 21850  df-cn 21940  df-cnp 21941  df-haus 22028  df-cmp 22100  df-tx 22275  df-hmeo 22468  df-fil 22559  df-fm 22651  df-flim 22652  df-flf 22653  df-xms 23035  df-ms 23036  df-tms 23037  df-cncf 23592  df-limc 24578  df-dv 24579  df-log 25260  df-logb 25463
This theorem is referenced by:  dvrelogpow2b  39668  aks4d1p1p6  39673
  Copyright terms: Public domain W3C validator