Proof of Theorem dvrelog2b
Step | Hyp | Ref
| Expression |
1 | | dvrelog2b.5 |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥)) |
2 | 1 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))) |
3 | | 2cnd 12051 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ) |
4 | | 2ne0 12077 |
. . . . . . . . 9
⊢ 2 ≠
0 |
5 | 4 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 0) |
6 | | 1red 10976 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ) |
7 | | 1lt2 12144 |
. . . . . . . . . . 11
⊢ 1 <
2 |
8 | 7 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 1 < 2) |
9 | 6, 8 | ltned 11111 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 1 ≠ 2) |
10 | 9 | necomd 2999 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 1) |
11 | 5, 10 | nelprd 4592 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ¬ 2 ∈ {0,
1}) |
12 | 3, 11 | eldifd 3898 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ (ℂ ∖ {0,
1})) |
13 | | elioore 13109 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ) |
14 | | recn 10961 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
15 | 13, 14 | syl 17 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℂ) |
16 | 15 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℂ) |
17 | | elsni 4578 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {0} → 𝑥 = 0) |
18 | | dvrelog2b.3 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 0 ≤ 𝐴) |
19 | | 0xr 11022 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ∈
ℝ* |
20 | 19 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 0 ∈
ℝ*) |
21 | | dvrelog2b.1 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
22 | | xrlenlt 11040 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((0
∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (0 ≤
𝐴 ↔ ¬ 𝐴 < 0)) |
23 | 20, 21, 22 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0)) |
24 | 18, 23 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ¬ 𝐴 < 0) |
25 | 24 | orcd 870 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (¬ 𝐴 < 0 ∨ ¬ 0 < 𝐵)) |
26 | | ianor 979 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
(𝐴 < 0 ∧ 0 <
𝐵) ↔ (¬ 𝐴 < 0 ∨ ¬ 0 < 𝐵)) |
27 | 25, 26 | sylibr 233 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ¬ (𝐴 < 0 ∧ 0 < 𝐵)) |
28 | | dvrelog2b.2 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
29 | | elioo5 13136 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 0 ∈ ℝ*) → (0 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 0 ∧ 0 < 𝐵))) |
30 | 21, 28, 20, 29 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (0 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 0 ∧ 0 < 𝐵))) |
31 | 30 | notbid 318 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (¬ 0 ∈ (𝐴(,)𝐵) ↔ ¬ (𝐴 < 0 ∧ 0 < 𝐵))) |
32 | 27, 31 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵)) |
33 | 32 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (0 ∈ (𝐴(,)𝐵) → ¬ 0 ∈ (𝐴(,)𝐵))) |
34 | 33 | imp 407 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 0 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ (𝐴(,)𝐵)) |
35 | 34 | pm2.01da 796 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵)) |
36 | 35 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 = 0) → ¬ 0 ∈ (𝐴(,)𝐵)) |
37 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 0 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 0 ∈ (𝐴(,)𝐵))) |
38 | 37 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 = 0) → (𝑥 ∈ (𝐴(,)𝐵) ↔ 0 ∈ (𝐴(,)𝐵))) |
39 | 36, 38 | mtbird 325 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = 0) → ¬ 𝑥 ∈ (𝐴(,)𝐵)) |
40 | 17, 39 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ {0}) → ¬ 𝑥 ∈ (𝐴(,)𝐵)) |
41 | 40 | ex 413 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ {0} → ¬ 𝑥 ∈ (𝐴(,)𝐵))) |
42 | 41 | con2d 134 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 ∈ {0})) |
43 | 42 | imp 407 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 ∈ {0}) |
44 | 16, 43 | eldifd 3898 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (ℂ ∖
{0})) |
45 | | logbval 25916 |
. . . . . 6
⊢ ((2
∈ (ℂ ∖ {0, 1}) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (2
logb 𝑥) =
((log‘𝑥) /
(log‘2))) |
46 | 12, 44, 45 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 𝑥) = ((log‘𝑥) /
(log‘2))) |
47 | 46 | mpteq2dva 5174 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((log‘𝑥) / (log‘2)))) |
48 | 2, 47 | eqtrd 2778 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((log‘𝑥) / (log‘2)))) |
49 | 48 | oveq2d 7291 |
. 2
⊢ (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((log‘𝑥) / (log‘2))))) |
50 | | reelprrecn 10963 |
. . . . 5
⊢ ℝ
∈ {ℝ, ℂ} |
51 | 50 | a1i 11 |
. . . 4
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
52 | 39 | ex 413 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 = 0 → ¬ 𝑥 ∈ (𝐴(,)𝐵))) |
53 | 52 | con2d 134 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 = 0)) |
54 | | biidd 261 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴(,)𝐵) → (𝑥 = 0 ↔ 𝑥 = 0)) |
55 | 54 | necon3bbid 2981 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴(,)𝐵) → (¬ 𝑥 = 0 ↔ 𝑥 ≠ 0)) |
56 | 55 | pm5.74i 270 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 = 0) ↔ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ≠ 0)) |
57 | 53, 56 | sylib 217 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ≠ 0)) |
58 | 57 | imp 407 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0) |
59 | 16, 58 | logcld 25726 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (log‘𝑥) ∈ ℂ) |
60 | 13 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ) |
61 | 6, 60, 58 | redivcld 11803 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (1 / 𝑥) ∈ ℝ) |
62 | | dvrelog2b.4 |
. . . . 5
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
63 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥)) |
64 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) |
65 | 21, 28, 18, 62, 63, 64 | dvrelog3 40073 |
. . . 4
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))) |
66 | | 2cnd 12051 |
. . . . 5
⊢ (𝜑 → 2 ∈
ℂ) |
67 | 4 | a1i 11 |
. . . . 5
⊢ (𝜑 → 2 ≠ 0) |
68 | 66, 67 | logcld 25726 |
. . . 4
⊢ (𝜑 → (log‘2) ∈
ℂ) |
69 | | 0red 10978 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℝ) |
70 | | 2rp 12735 |
. . . . . . . . 9
⊢ 2 ∈
ℝ+ |
71 | | loggt0b 25787 |
. . . . . . . . 9
⊢ (2 ∈
ℝ+ → (0 < (log‘2) ↔ 1 <
2)) |
72 | 70, 71 | ax-mp 5 |
. . . . . . . 8
⊢ (0 <
(log‘2) ↔ 1 < 2) |
73 | 7, 72 | mpbir 230 |
. . . . . . 7
⊢ 0 <
(log‘2) |
74 | 73 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 0 <
(log‘2)) |
75 | 69, 74 | ltned 11111 |
. . . . 5
⊢ (𝜑 → 0 ≠
(log‘2)) |
76 | 75 | necomd 2999 |
. . . 4
⊢ (𝜑 → (log‘2) ≠
0) |
77 | 51, 59, 61, 65, 68, 76 | dvmptdivc 25129 |
. . 3
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((log‘𝑥) / (log‘2)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((1 / 𝑥) / (log‘2)))) |
78 | 3, 5 | logcld 25726 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈
ℂ) |
79 | 76 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ≠
0) |
80 | 16, 78, 58, 79 | recdiv2d 11769 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((1 / 𝑥) / (log‘2)) = (1 / (𝑥 · (log‘2)))) |
81 | 80 | mpteq2dva 5174 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((1 / 𝑥) / (log‘2))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2))))) |
82 | | dvrelog2b.6 |
. . . . . 6
⊢ 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))) |
83 | 82 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2))))) |
84 | 83 | eqcomd 2744 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))) = 𝐺) |
85 | 81, 84 | eqtrd 2778 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((1 / 𝑥) / (log‘2))) = 𝐺) |
86 | 77, 85 | eqtrd 2778 |
. 2
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((log‘𝑥) / (log‘2)))) = 𝐺) |
87 | 49, 86 | eqtrd 2778 |
1
⊢ (𝜑 → (ℝ D 𝐹) = 𝐺) |