Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtno4prm Structured version   Visualization version   GIF version

Theorem fmtno4prm 44915
Description: The 4-th Fermat number (65537) is a prime (the fifth Fermat prime). (Contributed by AV, 28-Jul-2021.)
Assertion
Ref Expression
fmtno4prm (FermatNo‘4) ∈ ℙ

Proof of Theorem fmtno4prm
StepHypRef Expression
1 4nn0 12182 . . . 4 4 ∈ ℕ0
2 fmtno 44869 . . . 4 (4 ∈ ℕ0 → (FermatNo‘4) = ((2↑(2↑4)) + 1))
31, 2ax-mp 5 . . 3 (FermatNo‘4) = ((2↑(2↑4)) + 1)
4 2nn 11976 . . . . . 6 2 ∈ ℕ
5 2nn0 12180 . . . . . . 7 2 ∈ ℕ0
65, 1nn0expcli 13737 . . . . . 6 (2↑4) ∈ ℕ0
7 nnexpcl 13723 . . . . . 6 ((2 ∈ ℕ ∧ (2↑4) ∈ ℕ0) → (2↑(2↑4)) ∈ ℕ)
84, 6, 7mp2an 688 . . . . 5 (2↑(2↑4)) ∈ ℕ
9 2re 11977 . . . . . 6 2 ∈ ℝ
10 nnexpcl 13723 . . . . . . 7 ((2 ∈ ℕ ∧ 4 ∈ ℕ0) → (2↑4) ∈ ℕ)
114, 1, 10mp2an 688 . . . . . 6 (2↑4) ∈ ℕ
12 1lt2 12074 . . . . . 6 1 < 2
13 expgt1 13749 . . . . . 6 ((2 ∈ ℝ ∧ (2↑4) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(2↑4)))
149, 11, 12, 13mp3an 1459 . . . . 5 1 < (2↑(2↑4))
15 eluz2b2 12590 . . . . 5 ((2↑(2↑4)) ∈ (ℤ‘2) ↔ ((2↑(2↑4)) ∈ ℕ ∧ 1 < (2↑(2↑4))))
168, 14, 15mpbir2an 707 . . . 4 (2↑(2↑4)) ∈ (ℤ‘2)
17 peano2uz 12570 . . . 4 ((2↑(2↑4)) ∈ (ℤ‘2) → ((2↑(2↑4)) + 1) ∈ (ℤ‘2))
1816, 17ax-mp 5 . . 3 ((2↑(2↑4)) + 1) ∈ (ℤ‘2)
193, 18eqeltri 2835 . 2 (FermatNo‘4) ∈ (ℤ‘2)
20 elinel2 4126 . . . . . . 7 (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ∈ ℙ)
2120adantr 480 . . . . . 6 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ∈ ℙ)
22 simpr 484 . . . . . 6 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ∥ (FermatNo‘4))
23 elinel1 4125 . . . . . . . 8 (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ∈ (2...(⌊‘(√‘(FermatNo‘4)))))
24 elfzle2 13189 . . . . . . . 8 (𝑝 ∈ (2...(⌊‘(√‘(FermatNo‘4)))) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4))))
2523, 24syl 17 . . . . . . 7 (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4))))
2625adantr 480 . . . . . 6 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4))))
27 fmtno4prmfac193 44913 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (FermatNo‘4) ∧ 𝑝 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑝 = 193)
2821, 22, 26, 27syl3anc 1369 . . . . 5 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 = 193)
29 fmtno4nprmfac193 44914 . . . . . 6 ¬ 193 ∥ (FermatNo‘4)
30 breq1 5073 . . . . . 6 (𝑝 = 193 → (𝑝 ∥ (FermatNo‘4) ↔ 193 ∥ (FermatNo‘4)))
3129, 30mtbiri 326 . . . . 5 (𝑝 = 193 → ¬ 𝑝 ∥ (FermatNo‘4))
3228, 31syl 17 . . . 4 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → ¬ 𝑝 ∥ (FermatNo‘4))
3332pm2.01da 795 . . 3 (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → ¬ 𝑝 ∥ (FermatNo‘4))
3433rgen 3073 . 2 𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ¬ 𝑝 ∥ (FermatNo‘4)
35 isprm7 16341 . 2 ((FermatNo‘4) ∈ ℙ ↔ ((FermatNo‘4) ∈ (ℤ‘2) ∧ ∀𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ¬ 𝑝 ∥ (FermatNo‘4)))
3619, 34, 35mpbir2an 707 1 (FermatNo‘4) ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1539  wcel 2108  wral 3063  cin 3882   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cn 11903  2c2 11958  3c3 11959  4c4 11960  9c9 11965  0cn0 12163  cdc 12366  cuz 12511  ...cfz 13168  cfl 13438  cexp 13710  csqrt 14872  cdvds 15891  cprime 16304  FermatNocfmtno 44867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-ioo 13012  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-prod 15544  df-dvds 15892  df-gcd 16130  df-prm 16305  df-odz 16394  df-phi 16395  df-pc 16466  df-lgs 26348  df-fmtno 44868
This theorem is referenced by:  65537prm  44916  fmtnofz04prm  44917
  Copyright terms: Public domain W3C validator