Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtno4prm Structured version   Visualization version   GIF version

Theorem fmtno4prm 47054
Description: The 4-th Fermat number (65537) is a prime (the fifth Fermat prime). (Contributed by AV, 28-Jul-2021.)
Assertion
Ref Expression
fmtno4prm (FermatNo‘4) ∈ ℙ

Proof of Theorem fmtno4prm
StepHypRef Expression
1 4nn0 12529 . . . 4 4 ∈ ℕ0
2 fmtno 47008 . . . 4 (4 ∈ ℕ0 → (FermatNo‘4) = ((2↑(2↑4)) + 1))
31, 2ax-mp 5 . . 3 (FermatNo‘4) = ((2↑(2↑4)) + 1)
4 2nn 12323 . . . . . 6 2 ∈ ℕ
5 2nn0 12527 . . . . . . 7 2 ∈ ℕ0
65, 1nn0expcli 14094 . . . . . 6 (2↑4) ∈ ℕ0
7 nnexpcl 14080 . . . . . 6 ((2 ∈ ℕ ∧ (2↑4) ∈ ℕ0) → (2↑(2↑4)) ∈ ℕ)
84, 6, 7mp2an 690 . . . . 5 (2↑(2↑4)) ∈ ℕ
9 2re 12324 . . . . . 6 2 ∈ ℝ
10 nnexpcl 14080 . . . . . . 7 ((2 ∈ ℕ ∧ 4 ∈ ℕ0) → (2↑4) ∈ ℕ)
114, 1, 10mp2an 690 . . . . . 6 (2↑4) ∈ ℕ
12 1lt2 12421 . . . . . 6 1 < 2
13 expgt1 14106 . . . . . 6 ((2 ∈ ℝ ∧ (2↑4) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(2↑4)))
149, 11, 12, 13mp3an 1457 . . . . 5 1 < (2↑(2↑4))
15 eluz2b2 12943 . . . . 5 ((2↑(2↑4)) ∈ (ℤ‘2) ↔ ((2↑(2↑4)) ∈ ℕ ∧ 1 < (2↑(2↑4))))
168, 14, 15mpbir2an 709 . . . 4 (2↑(2↑4)) ∈ (ℤ‘2)
17 peano2uz 12923 . . . 4 ((2↑(2↑4)) ∈ (ℤ‘2) → ((2↑(2↑4)) + 1) ∈ (ℤ‘2))
1816, 17ax-mp 5 . . 3 ((2↑(2↑4)) + 1) ∈ (ℤ‘2)
193, 18eqeltri 2821 . 2 (FermatNo‘4) ∈ (ℤ‘2)
20 elinel2 4194 . . . . . . 7 (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ∈ ℙ)
2120adantr 479 . . . . . 6 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ∈ ℙ)
22 simpr 483 . . . . . 6 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ∥ (FermatNo‘4))
23 elinel1 4193 . . . . . . . 8 (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ∈ (2...(⌊‘(√‘(FermatNo‘4)))))
24 elfzle2 13545 . . . . . . . 8 (𝑝 ∈ (2...(⌊‘(√‘(FermatNo‘4)))) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4))))
2523, 24syl 17 . . . . . . 7 (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4))))
2625adantr 479 . . . . . 6 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4))))
27 fmtno4prmfac193 47052 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (FermatNo‘4) ∧ 𝑝 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑝 = 193)
2821, 22, 26, 27syl3anc 1368 . . . . 5 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 = 193)
29 fmtno4nprmfac193 47053 . . . . . 6 ¬ 193 ∥ (FermatNo‘4)
30 breq1 5152 . . . . . 6 (𝑝 = 193 → (𝑝 ∥ (FermatNo‘4) ↔ 193 ∥ (FermatNo‘4)))
3129, 30mtbiri 326 . . . . 5 (𝑝 = 193 → ¬ 𝑝 ∥ (FermatNo‘4))
3228, 31syl 17 . . . 4 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → ¬ 𝑝 ∥ (FermatNo‘4))
3332pm2.01da 797 . . 3 (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → ¬ 𝑝 ∥ (FermatNo‘4))
3433rgen 3052 . 2 𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ¬ 𝑝 ∥ (FermatNo‘4)
35 isprm7 16687 . 2 ((FermatNo‘4) ∈ ℙ ↔ ((FermatNo‘4) ∈ (ℤ‘2) ∧ ∀𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ¬ 𝑝 ∥ (FermatNo‘4)))
3619, 34, 35mpbir2an 709 1 (FermatNo‘4) ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 394   = wceq 1533  wcel 2098  wral 3050  cin 3943   class class class wbr 5149  cfv 6549  (class class class)co 7419  cr 11144  1c1 11146   + caddc 11148   < clt 11285  cle 11286  cn 12250  2c2 12305  3c3 12306  4c4 12307  9c9 12312  0cn0 12510  cdc 12715  cuz 12860  ...cfz 13524  cfl 13796  cexp 14067  csqrt 15221  cdvds 16239  cprime 16650  FermatNocfmtno 47006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9671  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9472  df-inf 9473  df-oi 9540  df-dju 9931  df-card 9969  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-xnn0 12583  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-ioo 13368  df-ico 13370  df-fz 13525  df-fzo 13668  df-fl 13798  df-mod 13876  df-seq 14008  df-exp 14068  df-fac 14274  df-hash 14331  df-cj 15087  df-re 15088  df-im 15089  df-sqrt 15223  df-abs 15224  df-clim 15473  df-prod 15891  df-dvds 16240  df-gcd 16478  df-prm 16651  df-odz 16742  df-phi 16743  df-pc 16814  df-lgs 27278  df-fmtno 47007
This theorem is referenced by:  65537prm  47055  fmtnofz04prm  47056
  Copyright terms: Public domain W3C validator