| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno4prm | Structured version Visualization version GIF version | ||
| Description: The 4-th Fermat number (65537) is a prime (the fifth Fermat prime). (Contributed by AV, 28-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno4prm | ⊢ (FermatNo‘4) ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn0 12520 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 2 | fmtno 47543 | . . . 4 ⊢ (4 ∈ ℕ0 → (FermatNo‘4) = ((2↑(2↑4)) + 1)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (FermatNo‘4) = ((2↑(2↑4)) + 1) |
| 4 | 2nn 12313 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 5 | 2nn0 12518 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 6 | 5, 1 | nn0expcli 14106 | . . . . . 6 ⊢ (2↑4) ∈ ℕ0 |
| 7 | nnexpcl 14092 | . . . . . 6 ⊢ ((2 ∈ ℕ ∧ (2↑4) ∈ ℕ0) → (2↑(2↑4)) ∈ ℕ) | |
| 8 | 4, 6, 7 | mp2an 692 | . . . . 5 ⊢ (2↑(2↑4)) ∈ ℕ |
| 9 | 2re 12314 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 10 | nnexpcl 14092 | . . . . . . 7 ⊢ ((2 ∈ ℕ ∧ 4 ∈ ℕ0) → (2↑4) ∈ ℕ) | |
| 11 | 4, 1, 10 | mp2an 692 | . . . . . 6 ⊢ (2↑4) ∈ ℕ |
| 12 | 1lt2 12411 | . . . . . 6 ⊢ 1 < 2 | |
| 13 | expgt1 14118 | . . . . . 6 ⊢ ((2 ∈ ℝ ∧ (2↑4) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(2↑4))) | |
| 14 | 9, 11, 12, 13 | mp3an 1463 | . . . . 5 ⊢ 1 < (2↑(2↑4)) |
| 15 | eluz2b2 12937 | . . . . 5 ⊢ ((2↑(2↑4)) ∈ (ℤ≥‘2) ↔ ((2↑(2↑4)) ∈ ℕ ∧ 1 < (2↑(2↑4)))) | |
| 16 | 8, 14, 15 | mpbir2an 711 | . . . 4 ⊢ (2↑(2↑4)) ∈ (ℤ≥‘2) |
| 17 | peano2uz 12917 | . . . 4 ⊢ ((2↑(2↑4)) ∈ (ℤ≥‘2) → ((2↑(2↑4)) + 1) ∈ (ℤ≥‘2)) | |
| 18 | 16, 17 | ax-mp 5 | . . 3 ⊢ ((2↑(2↑4)) + 1) ∈ (ℤ≥‘2) |
| 19 | 3, 18 | eqeltri 2830 | . 2 ⊢ (FermatNo‘4) ∈ (ℤ≥‘2) |
| 20 | elinel2 4177 | . . . . . . 7 ⊢ (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ∈ ℙ) | |
| 21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ∈ ℙ) |
| 22 | simpr 484 | . . . . . 6 ⊢ ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ∥ (FermatNo‘4)) | |
| 23 | elinel1 4176 | . . . . . . . 8 ⊢ (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ∈ (2...(⌊‘(√‘(FermatNo‘4))))) | |
| 24 | elfzle2 13545 | . . . . . . . 8 ⊢ (𝑝 ∈ (2...(⌊‘(√‘(FermatNo‘4)))) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4)))) | |
| 25 | 23, 24 | syl 17 | . . . . . . 7 ⊢ (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4)))) |
| 26 | 25 | adantr 480 | . . . . . 6 ⊢ ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4)))) |
| 27 | fmtno4prmfac193 47587 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (FermatNo‘4) ∧ 𝑝 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑝 = ;;193) | |
| 28 | 21, 22, 26, 27 | syl3anc 1373 | . . . . 5 ⊢ ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 = ;;193) |
| 29 | fmtno4nprmfac193 47588 | . . . . . 6 ⊢ ¬ ;;193 ∥ (FermatNo‘4) | |
| 30 | breq1 5122 | . . . . . 6 ⊢ (𝑝 = ;;193 → (𝑝 ∥ (FermatNo‘4) ↔ ;;193 ∥ (FermatNo‘4))) | |
| 31 | 29, 30 | mtbiri 327 | . . . . 5 ⊢ (𝑝 = ;;193 → ¬ 𝑝 ∥ (FermatNo‘4)) |
| 32 | 28, 31 | syl 17 | . . . 4 ⊢ ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → ¬ 𝑝 ∥ (FermatNo‘4)) |
| 33 | 32 | pm2.01da 798 | . . 3 ⊢ (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → ¬ 𝑝 ∥ (FermatNo‘4)) |
| 34 | 33 | rgen 3053 | . 2 ⊢ ∀𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ¬ 𝑝 ∥ (FermatNo‘4) |
| 35 | isprm7 16727 | . 2 ⊢ ((FermatNo‘4) ∈ ℙ ↔ ((FermatNo‘4) ∈ (ℤ≥‘2) ∧ ∀𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ¬ 𝑝 ∥ (FermatNo‘4))) | |
| 36 | 19, 34, 35 | mpbir2an 711 | 1 ⊢ (FermatNo‘4) ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∩ cin 3925 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 1c1 11130 + caddc 11132 < clt 11269 ≤ cle 11270 ℕcn 12240 2c2 12295 3c3 12296 4c4 12297 9c9 12302 ℕ0cn0 12501 ;cdc 12708 ℤ≥cuz 12852 ...cfz 13524 ⌊cfl 13807 ↑cexp 14079 √csqrt 15252 ∥ cdvds 16272 ℙcprime 16690 FermatNocfmtno 47541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-oi 9524 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-xnn0 12575 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-ioo 13366 df-ico 13368 df-fz 13525 df-fzo 13672 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-fac 14292 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-prod 15920 df-dvds 16273 df-gcd 16514 df-prm 16691 df-odz 16784 df-phi 16785 df-pc 16857 df-lgs 27258 df-fmtno 47542 |
| This theorem is referenced by: 65537prm 47590 fmtnofz04prm 47591 |
| Copyright terms: Public domain | W3C validator |