| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno4prm | Structured version Visualization version GIF version | ||
| Description: The 4-th Fermat number (65537) is a prime (the fifth Fermat prime). (Contributed by AV, 28-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno4prm | ⊢ (FermatNo‘4) ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn0 12461 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 2 | fmtno 47530 | . . . 4 ⊢ (4 ∈ ℕ0 → (FermatNo‘4) = ((2↑(2↑4)) + 1)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (FermatNo‘4) = ((2↑(2↑4)) + 1) |
| 4 | 2nn 12259 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 5 | 2nn0 12459 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 6 | 5, 1 | nn0expcli 14053 | . . . . . 6 ⊢ (2↑4) ∈ ℕ0 |
| 7 | nnexpcl 14039 | . . . . . 6 ⊢ ((2 ∈ ℕ ∧ (2↑4) ∈ ℕ0) → (2↑(2↑4)) ∈ ℕ) | |
| 8 | 4, 6, 7 | mp2an 692 | . . . . 5 ⊢ (2↑(2↑4)) ∈ ℕ |
| 9 | 2re 12260 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 10 | nnexpcl 14039 | . . . . . . 7 ⊢ ((2 ∈ ℕ ∧ 4 ∈ ℕ0) → (2↑4) ∈ ℕ) | |
| 11 | 4, 1, 10 | mp2an 692 | . . . . . 6 ⊢ (2↑4) ∈ ℕ |
| 12 | 1lt2 12352 | . . . . . 6 ⊢ 1 < 2 | |
| 13 | expgt1 14065 | . . . . . 6 ⊢ ((2 ∈ ℝ ∧ (2↑4) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(2↑4))) | |
| 14 | 9, 11, 12, 13 | mp3an 1463 | . . . . 5 ⊢ 1 < (2↑(2↑4)) |
| 15 | eluz2b2 12880 | . . . . 5 ⊢ ((2↑(2↑4)) ∈ (ℤ≥‘2) ↔ ((2↑(2↑4)) ∈ ℕ ∧ 1 < (2↑(2↑4)))) | |
| 16 | 8, 14, 15 | mpbir2an 711 | . . . 4 ⊢ (2↑(2↑4)) ∈ (ℤ≥‘2) |
| 17 | peano2uz 12860 | . . . 4 ⊢ ((2↑(2↑4)) ∈ (ℤ≥‘2) → ((2↑(2↑4)) + 1) ∈ (ℤ≥‘2)) | |
| 18 | 16, 17 | ax-mp 5 | . . 3 ⊢ ((2↑(2↑4)) + 1) ∈ (ℤ≥‘2) |
| 19 | 3, 18 | eqeltri 2824 | . 2 ⊢ (FermatNo‘4) ∈ (ℤ≥‘2) |
| 20 | elinel2 4165 | . . . . . . 7 ⊢ (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ∈ ℙ) | |
| 21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ∈ ℙ) |
| 22 | simpr 484 | . . . . . 6 ⊢ ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ∥ (FermatNo‘4)) | |
| 23 | elinel1 4164 | . . . . . . . 8 ⊢ (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ∈ (2...(⌊‘(√‘(FermatNo‘4))))) | |
| 24 | elfzle2 13489 | . . . . . . . 8 ⊢ (𝑝 ∈ (2...(⌊‘(√‘(FermatNo‘4)))) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4)))) | |
| 25 | 23, 24 | syl 17 | . . . . . . 7 ⊢ (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4)))) |
| 26 | 25 | adantr 480 | . . . . . 6 ⊢ ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4)))) |
| 27 | fmtno4prmfac193 47574 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (FermatNo‘4) ∧ 𝑝 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑝 = ;;193) | |
| 28 | 21, 22, 26, 27 | syl3anc 1373 | . . . . 5 ⊢ ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 = ;;193) |
| 29 | fmtno4nprmfac193 47575 | . . . . . 6 ⊢ ¬ ;;193 ∥ (FermatNo‘4) | |
| 30 | breq1 5110 | . . . . . 6 ⊢ (𝑝 = ;;193 → (𝑝 ∥ (FermatNo‘4) ↔ ;;193 ∥ (FermatNo‘4))) | |
| 31 | 29, 30 | mtbiri 327 | . . . . 5 ⊢ (𝑝 = ;;193 → ¬ 𝑝 ∥ (FermatNo‘4)) |
| 32 | 28, 31 | syl 17 | . . . 4 ⊢ ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → ¬ 𝑝 ∥ (FermatNo‘4)) |
| 33 | 32 | pm2.01da 798 | . . 3 ⊢ (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → ¬ 𝑝 ∥ (FermatNo‘4)) |
| 34 | 33 | rgen 3046 | . 2 ⊢ ∀𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ¬ 𝑝 ∥ (FermatNo‘4) |
| 35 | isprm7 16678 | . 2 ⊢ ((FermatNo‘4) ∈ ℙ ↔ ((FermatNo‘4) ∈ (ℤ≥‘2) ∧ ∀𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ¬ 𝑝 ∥ (FermatNo‘4))) | |
| 36 | 19, 34, 35 | mpbir2an 711 | 1 ⊢ (FermatNo‘4) ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3913 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 1c1 11069 + caddc 11071 < clt 11208 ≤ cle 11209 ℕcn 12186 2c2 12241 3c3 12242 4c4 12243 9c9 12248 ℕ0cn0 12442 ;cdc 12649 ℤ≥cuz 12793 ...cfz 13468 ⌊cfl 13752 ↑cexp 14026 √csqrt 15199 ∥ cdvds 16222 ℙcprime 16641 FermatNocfmtno 47528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-ioo 13310 df-ico 13312 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-prod 15870 df-dvds 16223 df-gcd 16465 df-prm 16642 df-odz 16735 df-phi 16736 df-pc 16808 df-lgs 27206 df-fmtno 47529 |
| This theorem is referenced by: 65537prm 47577 fmtnofz04prm 47578 |
| Copyright terms: Public domain | W3C validator |