Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno4prm | Structured version Visualization version GIF version |
Description: The 4-th Fermat number (65537) is a prime (the fifth Fermat prime). (Contributed by AV, 28-Jul-2021.) |
Ref | Expression |
---|---|
fmtno4prm | ⊢ (FermatNo‘4) ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn0 12252 | . . . 4 ⊢ 4 ∈ ℕ0 | |
2 | fmtno 44981 | . . . 4 ⊢ (4 ∈ ℕ0 → (FermatNo‘4) = ((2↑(2↑4)) + 1)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (FermatNo‘4) = ((2↑(2↑4)) + 1) |
4 | 2nn 12046 | . . . . . 6 ⊢ 2 ∈ ℕ | |
5 | 2nn0 12250 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
6 | 5, 1 | nn0expcli 13809 | . . . . . 6 ⊢ (2↑4) ∈ ℕ0 |
7 | nnexpcl 13795 | . . . . . 6 ⊢ ((2 ∈ ℕ ∧ (2↑4) ∈ ℕ0) → (2↑(2↑4)) ∈ ℕ) | |
8 | 4, 6, 7 | mp2an 689 | . . . . 5 ⊢ (2↑(2↑4)) ∈ ℕ |
9 | 2re 12047 | . . . . . 6 ⊢ 2 ∈ ℝ | |
10 | nnexpcl 13795 | . . . . . . 7 ⊢ ((2 ∈ ℕ ∧ 4 ∈ ℕ0) → (2↑4) ∈ ℕ) | |
11 | 4, 1, 10 | mp2an 689 | . . . . . 6 ⊢ (2↑4) ∈ ℕ |
12 | 1lt2 12144 | . . . . . 6 ⊢ 1 < 2 | |
13 | expgt1 13821 | . . . . . 6 ⊢ ((2 ∈ ℝ ∧ (2↑4) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(2↑4))) | |
14 | 9, 11, 12, 13 | mp3an 1460 | . . . . 5 ⊢ 1 < (2↑(2↑4)) |
15 | eluz2b2 12661 | . . . . 5 ⊢ ((2↑(2↑4)) ∈ (ℤ≥‘2) ↔ ((2↑(2↑4)) ∈ ℕ ∧ 1 < (2↑(2↑4)))) | |
16 | 8, 14, 15 | mpbir2an 708 | . . . 4 ⊢ (2↑(2↑4)) ∈ (ℤ≥‘2) |
17 | peano2uz 12641 | . . . 4 ⊢ ((2↑(2↑4)) ∈ (ℤ≥‘2) → ((2↑(2↑4)) + 1) ∈ (ℤ≥‘2)) | |
18 | 16, 17 | ax-mp 5 | . . 3 ⊢ ((2↑(2↑4)) + 1) ∈ (ℤ≥‘2) |
19 | 3, 18 | eqeltri 2835 | . 2 ⊢ (FermatNo‘4) ∈ (ℤ≥‘2) |
20 | elinel2 4130 | . . . . . . 7 ⊢ (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ∈ ℙ) | |
21 | 20 | adantr 481 | . . . . . 6 ⊢ ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ∈ ℙ) |
22 | simpr 485 | . . . . . 6 ⊢ ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ∥ (FermatNo‘4)) | |
23 | elinel1 4129 | . . . . . . . 8 ⊢ (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ∈ (2...(⌊‘(√‘(FermatNo‘4))))) | |
24 | elfzle2 13260 | . . . . . . . 8 ⊢ (𝑝 ∈ (2...(⌊‘(√‘(FermatNo‘4)))) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4)))) | |
25 | 23, 24 | syl 17 | . . . . . . 7 ⊢ (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4)))) |
26 | 25 | adantr 481 | . . . . . 6 ⊢ ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4)))) |
27 | fmtno4prmfac193 45025 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (FermatNo‘4) ∧ 𝑝 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑝 = ;;193) | |
28 | 21, 22, 26, 27 | syl3anc 1370 | . . . . 5 ⊢ ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 = ;;193) |
29 | fmtno4nprmfac193 45026 | . . . . . 6 ⊢ ¬ ;;193 ∥ (FermatNo‘4) | |
30 | breq1 5077 | . . . . . 6 ⊢ (𝑝 = ;;193 → (𝑝 ∥ (FermatNo‘4) ↔ ;;193 ∥ (FermatNo‘4))) | |
31 | 29, 30 | mtbiri 327 | . . . . 5 ⊢ (𝑝 = ;;193 → ¬ 𝑝 ∥ (FermatNo‘4)) |
32 | 28, 31 | syl 17 | . . . 4 ⊢ ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → ¬ 𝑝 ∥ (FermatNo‘4)) |
33 | 32 | pm2.01da 796 | . . 3 ⊢ (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → ¬ 𝑝 ∥ (FermatNo‘4)) |
34 | 33 | rgen 3074 | . 2 ⊢ ∀𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ¬ 𝑝 ∥ (FermatNo‘4) |
35 | isprm7 16413 | . 2 ⊢ ((FermatNo‘4) ∈ ℙ ↔ ((FermatNo‘4) ∈ (ℤ≥‘2) ∧ ∀𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ¬ 𝑝 ∥ (FermatNo‘4))) | |
36 | 19, 34, 35 | mpbir2an 708 | 1 ⊢ (FermatNo‘4) ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∩ cin 3886 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 1c1 10872 + caddc 10874 < clt 11009 ≤ cle 11010 ℕcn 11973 2c2 12028 3c3 12029 4c4 12030 9c9 12035 ℕ0cn0 12233 ;cdc 12437 ℤ≥cuz 12582 ...cfz 13239 ⌊cfl 13510 ↑cexp 13782 √csqrt 14944 ∥ cdvds 15963 ℙcprime 16376 FermatNocfmtno 44979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-xnn0 12306 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-ioo 13083 df-ico 13085 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-fac 13988 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-prod 15616 df-dvds 15964 df-gcd 16202 df-prm 16377 df-odz 16466 df-phi 16467 df-pc 16538 df-lgs 26443 df-fmtno 44980 |
This theorem is referenced by: 65537prm 45028 fmtnofz04prm 45029 |
Copyright terms: Public domain | W3C validator |