Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtno4prm Structured version   Visualization version   GIF version

Theorem fmtno4prm 47699
Description: The 4-th Fermat number (65537) is a prime (the fifth Fermat prime). (Contributed by AV, 28-Jul-2021.)
Assertion
Ref Expression
fmtno4prm (FermatNo‘4) ∈ ℙ

Proof of Theorem fmtno4prm
StepHypRef Expression
1 4nn0 12407 . . . 4 4 ∈ ℕ0
2 fmtno 47653 . . . 4 (4 ∈ ℕ0 → (FermatNo‘4) = ((2↑(2↑4)) + 1))
31, 2ax-mp 5 . . 3 (FermatNo‘4) = ((2↑(2↑4)) + 1)
4 2nn 12205 . . . . . 6 2 ∈ ℕ
5 2nn0 12405 . . . . . . 7 2 ∈ ℕ0
65, 1nn0expcli 13997 . . . . . 6 (2↑4) ∈ ℕ0
7 nnexpcl 13983 . . . . . 6 ((2 ∈ ℕ ∧ (2↑4) ∈ ℕ0) → (2↑(2↑4)) ∈ ℕ)
84, 6, 7mp2an 692 . . . . 5 (2↑(2↑4)) ∈ ℕ
9 2re 12206 . . . . . 6 2 ∈ ℝ
10 nnexpcl 13983 . . . . . . 7 ((2 ∈ ℕ ∧ 4 ∈ ℕ0) → (2↑4) ∈ ℕ)
114, 1, 10mp2an 692 . . . . . 6 (2↑4) ∈ ℕ
12 1lt2 12298 . . . . . 6 1 < 2
13 expgt1 14009 . . . . . 6 ((2 ∈ ℝ ∧ (2↑4) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(2↑4)))
149, 11, 12, 13mp3an 1463 . . . . 5 1 < (2↑(2↑4))
15 eluz2b2 12821 . . . . 5 ((2↑(2↑4)) ∈ (ℤ‘2) ↔ ((2↑(2↑4)) ∈ ℕ ∧ 1 < (2↑(2↑4))))
168, 14, 15mpbir2an 711 . . . 4 (2↑(2↑4)) ∈ (ℤ‘2)
17 peano2uz 12801 . . . 4 ((2↑(2↑4)) ∈ (ℤ‘2) → ((2↑(2↑4)) + 1) ∈ (ℤ‘2))
1816, 17ax-mp 5 . . 3 ((2↑(2↑4)) + 1) ∈ (ℤ‘2)
193, 18eqeltri 2829 . 2 (FermatNo‘4) ∈ (ℤ‘2)
20 elinel2 4151 . . . . . . 7 (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ∈ ℙ)
2120adantr 480 . . . . . 6 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ∈ ℙ)
22 simpr 484 . . . . . 6 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ∥ (FermatNo‘4))
23 elinel1 4150 . . . . . . . 8 (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ∈ (2...(⌊‘(√‘(FermatNo‘4)))))
24 elfzle2 13430 . . . . . . . 8 (𝑝 ∈ (2...(⌊‘(√‘(FermatNo‘4)))) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4))))
2523, 24syl 17 . . . . . . 7 (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4))))
2625adantr 480 . . . . . 6 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4))))
27 fmtno4prmfac193 47697 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (FermatNo‘4) ∧ 𝑝 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑝 = 193)
2821, 22, 26, 27syl3anc 1373 . . . . 5 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 = 193)
29 fmtno4nprmfac193 47698 . . . . . 6 ¬ 193 ∥ (FermatNo‘4)
30 breq1 5096 . . . . . 6 (𝑝 = 193 → (𝑝 ∥ (FermatNo‘4) ↔ 193 ∥ (FermatNo‘4)))
3129, 30mtbiri 327 . . . . 5 (𝑝 = 193 → ¬ 𝑝 ∥ (FermatNo‘4))
3228, 31syl 17 . . . 4 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → ¬ 𝑝 ∥ (FermatNo‘4))
3332pm2.01da 798 . . 3 (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → ¬ 𝑝 ∥ (FermatNo‘4))
3433rgen 3050 . 2 𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ¬ 𝑝 ∥ (FermatNo‘4)
35 isprm7 16621 . 2 ((FermatNo‘4) ∈ ℙ ↔ ((FermatNo‘4) ∈ (ℤ‘2) ∧ ∀𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ¬ 𝑝 ∥ (FermatNo‘4)))
3619, 34, 35mpbir2an 711 1 (FermatNo‘4) ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wcel 2113  wral 3048  cin 3897   class class class wbr 5093  cfv 6486  (class class class)co 7352  cr 11012  1c1 11014   + caddc 11016   < clt 11153  cle 11154  cn 12132  2c2 12187  3c3 12188  4c4 12189  9c9 12194  0cn0 12388  cdc 12594  cuz 12738  ...cfz 13409  cfl 13696  cexp 13970  csqrt 15142  cdvds 16165  cprime 16584  FermatNocfmtno 47651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-oi 9403  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-xnn0 12462  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-ioo 13251  df-ico 13253  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-prod 15813  df-dvds 16166  df-gcd 16408  df-prm 16585  df-odz 16678  df-phi 16679  df-pc 16751  df-lgs 27234  df-fmtno 47652
This theorem is referenced by:  65537prm  47700  fmtnofz04prm  47701
  Copyright terms: Public domain W3C validator