Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtno4prm Structured version   Visualization version   GIF version

Theorem fmtno4prm 47562
Description: The 4-th Fermat number (65537) is a prime (the fifth Fermat prime). (Contributed by AV, 28-Jul-2021.)
Assertion
Ref Expression
fmtno4prm (FermatNo‘4) ∈ ℙ

Proof of Theorem fmtno4prm
StepHypRef Expression
1 4nn0 12545 . . . 4 4 ∈ ℕ0
2 fmtno 47516 . . . 4 (4 ∈ ℕ0 → (FermatNo‘4) = ((2↑(2↑4)) + 1))
31, 2ax-mp 5 . . 3 (FermatNo‘4) = ((2↑(2↑4)) + 1)
4 2nn 12339 . . . . . 6 2 ∈ ℕ
5 2nn0 12543 . . . . . . 7 2 ∈ ℕ0
65, 1nn0expcli 14129 . . . . . 6 (2↑4) ∈ ℕ0
7 nnexpcl 14115 . . . . . 6 ((2 ∈ ℕ ∧ (2↑4) ∈ ℕ0) → (2↑(2↑4)) ∈ ℕ)
84, 6, 7mp2an 692 . . . . 5 (2↑(2↑4)) ∈ ℕ
9 2re 12340 . . . . . 6 2 ∈ ℝ
10 nnexpcl 14115 . . . . . . 7 ((2 ∈ ℕ ∧ 4 ∈ ℕ0) → (2↑4) ∈ ℕ)
114, 1, 10mp2an 692 . . . . . 6 (2↑4) ∈ ℕ
12 1lt2 12437 . . . . . 6 1 < 2
13 expgt1 14141 . . . . . 6 ((2 ∈ ℝ ∧ (2↑4) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(2↑4)))
149, 11, 12, 13mp3an 1463 . . . . 5 1 < (2↑(2↑4))
15 eluz2b2 12963 . . . . 5 ((2↑(2↑4)) ∈ (ℤ‘2) ↔ ((2↑(2↑4)) ∈ ℕ ∧ 1 < (2↑(2↑4))))
168, 14, 15mpbir2an 711 . . . 4 (2↑(2↑4)) ∈ (ℤ‘2)
17 peano2uz 12943 . . . 4 ((2↑(2↑4)) ∈ (ℤ‘2) → ((2↑(2↑4)) + 1) ∈ (ℤ‘2))
1816, 17ax-mp 5 . . 3 ((2↑(2↑4)) + 1) ∈ (ℤ‘2)
193, 18eqeltri 2837 . 2 (FermatNo‘4) ∈ (ℤ‘2)
20 elinel2 4202 . . . . . . 7 (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ∈ ℙ)
2120adantr 480 . . . . . 6 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ∈ ℙ)
22 simpr 484 . . . . . 6 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ∥ (FermatNo‘4))
23 elinel1 4201 . . . . . . . 8 (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ∈ (2...(⌊‘(√‘(FermatNo‘4)))))
24 elfzle2 13568 . . . . . . . 8 (𝑝 ∈ (2...(⌊‘(√‘(FermatNo‘4)))) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4))))
2523, 24syl 17 . . . . . . 7 (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4))))
2625adantr 480 . . . . . 6 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4))))
27 fmtno4prmfac193 47560 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (FermatNo‘4) ∧ 𝑝 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑝 = 193)
2821, 22, 26, 27syl3anc 1373 . . . . 5 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 = 193)
29 fmtno4nprmfac193 47561 . . . . . 6 ¬ 193 ∥ (FermatNo‘4)
30 breq1 5146 . . . . . 6 (𝑝 = 193 → (𝑝 ∥ (FermatNo‘4) ↔ 193 ∥ (FermatNo‘4)))
3129, 30mtbiri 327 . . . . 5 (𝑝 = 193 → ¬ 𝑝 ∥ (FermatNo‘4))
3228, 31syl 17 . . . 4 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → ¬ 𝑝 ∥ (FermatNo‘4))
3332pm2.01da 799 . . 3 (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → ¬ 𝑝 ∥ (FermatNo‘4))
3433rgen 3063 . 2 𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ¬ 𝑝 ∥ (FermatNo‘4)
35 isprm7 16745 . 2 ((FermatNo‘4) ∈ ℙ ↔ ((FermatNo‘4) ∈ (ℤ‘2) ∧ ∀𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ¬ 𝑝 ∥ (FermatNo‘4)))
3619, 34, 35mpbir2an 711 1 (FermatNo‘4) ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2108  wral 3061  cin 3950   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cn 12266  2c2 12321  3c3 12322  4c4 12323  9c9 12328  0cn0 12526  cdc 12733  cuz 12878  ...cfz 13547  cfl 13830  cexp 14102  csqrt 15272  cdvds 16290  cprime 16708  FermatNocfmtno 47514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-ioo 13391  df-ico 13393  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-prod 15940  df-dvds 16291  df-gcd 16532  df-prm 16709  df-odz 16802  df-phi 16803  df-pc 16875  df-lgs 27339  df-fmtno 47515
This theorem is referenced by:  65537prm  47563  fmtnofz04prm  47564
  Copyright terms: Public domain W3C validator