MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem18 Structured version   Visualization version   GIF version

Theorem 4sqlem18 16940
Description: Lemma for 4sq 16942. Inductive step, odd prime case. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sq.5 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
4sq.6 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
4sq.7 𝑀 = inf(𝑇, ℝ, < )
Assertion
Ref Expression
4sqlem18 (𝜑𝑃𝑆)
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝑖,𝑛,𝑀   𝑛,𝑁   𝑃,𝑖,𝑛   𝜑,𝑛   𝑆,𝑖,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑖)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑀(𝑥,𝑦,𝑧,𝑤)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑖)

Proof of Theorem 4sqlem18
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.4 . . . . 5 (𝜑𝑃 ∈ ℙ)
2 prmnn 16651 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2syl 17 . . . 4 (𝜑𝑃 ∈ ℕ)
43nncnd 12209 . . 3 (𝜑𝑃 ∈ ℂ)
54mullidd 11199 . 2 (𝜑 → (1 · 𝑃) = 𝑃)
6 4sq.7 . . . . . . . . . . . 12 𝑀 = inf(𝑇, ℝ, < )
7 4sq.6 . . . . . . . . . . . . . . 15 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
87ssrab3 4048 . . . . . . . . . . . . . 14 𝑇 ⊆ ℕ
9 nnuz 12843 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
108, 9sseqtri 3998 . . . . . . . . . . . . 13 𝑇 ⊆ (ℤ‘1)
11 4sq.1 . . . . . . . . . . . . . . 15 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
12 4sq.2 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ)
13 4sq.3 . . . . . . . . . . . . . . 15 (𝜑𝑃 = ((2 · 𝑁) + 1))
14 4sq.5 . . . . . . . . . . . . . . 15 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
1511, 12, 13, 1, 14, 7, 64sqlem13 16935 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 ≠ ∅ ∧ 𝑀 < 𝑃))
1615simpld 494 . . . . . . . . . . . . 13 (𝜑𝑇 ≠ ∅)
17 infssuzcl 12898 . . . . . . . . . . . . 13 ((𝑇 ⊆ (ℤ‘1) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ 𝑇)
1810, 16, 17sylancr 587 . . . . . . . . . . . 12 (𝜑 → inf(𝑇, ℝ, < ) ∈ 𝑇)
196, 18eqeltrid 2833 . . . . . . . . . . 11 (𝜑𝑀𝑇)
20 oveq1 7397 . . . . . . . . . . . . 13 (𝑖 = 𝑀 → (𝑖 · 𝑃) = (𝑀 · 𝑃))
2120eleq1d 2814 . . . . . . . . . . . 12 (𝑖 = 𝑀 → ((𝑖 · 𝑃) ∈ 𝑆 ↔ (𝑀 · 𝑃) ∈ 𝑆))
2221, 7elrab2 3665 . . . . . . . . . . 11 (𝑀𝑇 ↔ (𝑀 ∈ ℕ ∧ (𝑀 · 𝑃) ∈ 𝑆))
2319, 22sylib 218 . . . . . . . . . 10 (𝜑 → (𝑀 ∈ ℕ ∧ (𝑀 · 𝑃) ∈ 𝑆))
2423simprd 495 . . . . . . . . 9 (𝜑 → (𝑀 · 𝑃) ∈ 𝑆)
25114sqlem2 16927 . . . . . . . . 9 ((𝑀 · 𝑃) ∈ 𝑆 ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
2624, 25sylib 218 . . . . . . . 8 (𝜑 → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
2726adantr 480 . . . . . . 7 ((𝜑𝑀 ∈ (ℤ‘2)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
28 simp1l 1198 . . . . . . . . . . . . . 14 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝜑)
2928, 12syl 17 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑁 ∈ ℕ)
3028, 13syl 17 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑃 = ((2 · 𝑁) + 1))
3128, 1syl 17 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑃 ∈ ℙ)
3228, 14syl 17 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → (0...(2 · 𝑁)) ⊆ 𝑆)
33 simp1r 1199 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑀 ∈ (ℤ‘2))
34 simp2ll 1241 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑎 ∈ ℤ)
35 simp2lr 1242 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑏 ∈ ℤ)
36 simp2rl 1243 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑐 ∈ ℤ)
37 simp2rr 1244 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑑 ∈ ℤ)
38 eqid 2730 . . . . . . . . . . . . 13 (((𝑎 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (((𝑎 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
39 eqid 2730 . . . . . . . . . . . . 13 (((𝑏 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (((𝑏 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
40 eqid 2730 . . . . . . . . . . . . 13 (((𝑐 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (((𝑐 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
41 eqid 2730 . . . . . . . . . . . . 13 (((𝑑 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (((𝑑 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
42 eqid 2730 . . . . . . . . . . . . 13 (((((((𝑎 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2) + ((((𝑏 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2)) + (((((𝑐 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2) + ((((𝑑 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2))) / 𝑀) = (((((((𝑎 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2) + ((((𝑏 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2)) + (((((𝑐 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2) + ((((𝑑 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2))) / 𝑀)
43 simp3 1138 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
4411, 29, 30, 31, 32, 7, 6, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 434sqlem17 16939 . . . . . . . . . . . 12 ¬ ((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
4544pm2.21i 119 . . . . . . . . . . 11 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → ¬ 𝑀 ∈ (ℤ‘2))
46453expia 1121 . . . . . . . . . 10 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ))) → ((𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ¬ 𝑀 ∈ (ℤ‘2)))
4746anassrs 467 . . . . . . . . 9 ((((𝜑𝑀 ∈ (ℤ‘2)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → ((𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ¬ 𝑀 ∈ (ℤ‘2)))
4847rexlimdvva 3195 . . . . . . . 8 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ¬ 𝑀 ∈ (ℤ‘2)))
4948rexlimdvva 3195 . . . . . . 7 ((𝜑𝑀 ∈ (ℤ‘2)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ¬ 𝑀 ∈ (ℤ‘2)))
5027, 49mpd 15 . . . . . 6 ((𝜑𝑀 ∈ (ℤ‘2)) → ¬ 𝑀 ∈ (ℤ‘2))
5150pm2.01da 798 . . . . 5 (𝜑 → ¬ 𝑀 ∈ (ℤ‘2))
5223simpld 494 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
53 elnn1uz2 12891 . . . . . . 7 (𝑀 ∈ ℕ ↔ (𝑀 = 1 ∨ 𝑀 ∈ (ℤ‘2)))
5452, 53sylib 218 . . . . . 6 (𝜑 → (𝑀 = 1 ∨ 𝑀 ∈ (ℤ‘2)))
5554ord 864 . . . . 5 (𝜑 → (¬ 𝑀 = 1 → 𝑀 ∈ (ℤ‘2)))
5651, 55mt3d 148 . . . 4 (𝜑𝑀 = 1)
5756, 19eqeltrrd 2830 . . 3 (𝜑 → 1 ∈ 𝑇)
58 oveq1 7397 . . . . . 6 (𝑖 = 1 → (𝑖 · 𝑃) = (1 · 𝑃))
5958eleq1d 2814 . . . . 5 (𝑖 = 1 → ((𝑖 · 𝑃) ∈ 𝑆 ↔ (1 · 𝑃) ∈ 𝑆))
6059, 7elrab2 3665 . . . 4 (1 ∈ 𝑇 ↔ (1 ∈ ℕ ∧ (1 · 𝑃) ∈ 𝑆))
6160simprbi 496 . . 3 (1 ∈ 𝑇 → (1 · 𝑃) ∈ 𝑆)
6257, 61syl 17 . 2 (𝜑 → (1 · 𝑃) ∈ 𝑆)
635, 62eqeltrrd 2830 1 (𝜑𝑃𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wrex 3054  {crab 3408  wss 3917  c0 4299   class class class wbr 5110  cfv 6514  (class class class)co 7390  infcinf 9399  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  cz 12536  cuz 12800  ...cfz 13475   mod cmo 13838  cexp 14033  cprime 16648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-prm 16649  df-gz 16908
This theorem is referenced by:  4sqlem19  16941
  Copyright terms: Public domain W3C validator