MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem18 Structured version   Visualization version   GIF version

Theorem 4sqlem18 16996
Description: Lemma for 4sq 16998. Inductive step, odd prime case. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sq.5 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
4sq.6 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
4sq.7 𝑀 = inf(𝑇, ℝ, < )
Assertion
Ref Expression
4sqlem18 (𝜑𝑃𝑆)
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝑖,𝑛,𝑀   𝑛,𝑁   𝑃,𝑖,𝑛   𝜑,𝑛   𝑆,𝑖,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑖)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑀(𝑥,𝑦,𝑧,𝑤)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑖)

Proof of Theorem 4sqlem18
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.4 . . . . 5 (𝜑𝑃 ∈ ℙ)
2 prmnn 16708 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2syl 17 . . . 4 (𝜑𝑃 ∈ ℕ)
43nncnd 12280 . . 3 (𝜑𝑃 ∈ ℂ)
54mullidd 11277 . 2 (𝜑 → (1 · 𝑃) = 𝑃)
6 4sq.7 . . . . . . . . . . . 12 𝑀 = inf(𝑇, ℝ, < )
7 4sq.6 . . . . . . . . . . . . . . 15 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
87ssrab3 4092 . . . . . . . . . . . . . 14 𝑇 ⊆ ℕ
9 nnuz 12919 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
108, 9sseqtri 4032 . . . . . . . . . . . . 13 𝑇 ⊆ (ℤ‘1)
11 4sq.1 . . . . . . . . . . . . . . 15 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
12 4sq.2 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ)
13 4sq.3 . . . . . . . . . . . . . . 15 (𝜑𝑃 = ((2 · 𝑁) + 1))
14 4sq.5 . . . . . . . . . . . . . . 15 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
1511, 12, 13, 1, 14, 7, 64sqlem13 16991 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 ≠ ∅ ∧ 𝑀 < 𝑃))
1615simpld 494 . . . . . . . . . . . . 13 (𝜑𝑇 ≠ ∅)
17 infssuzcl 12972 . . . . . . . . . . . . 13 ((𝑇 ⊆ (ℤ‘1) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ 𝑇)
1810, 16, 17sylancr 587 . . . . . . . . . . . 12 (𝜑 → inf(𝑇, ℝ, < ) ∈ 𝑇)
196, 18eqeltrid 2843 . . . . . . . . . . 11 (𝜑𝑀𝑇)
20 oveq1 7438 . . . . . . . . . . . . 13 (𝑖 = 𝑀 → (𝑖 · 𝑃) = (𝑀 · 𝑃))
2120eleq1d 2824 . . . . . . . . . . . 12 (𝑖 = 𝑀 → ((𝑖 · 𝑃) ∈ 𝑆 ↔ (𝑀 · 𝑃) ∈ 𝑆))
2221, 7elrab2 3698 . . . . . . . . . . 11 (𝑀𝑇 ↔ (𝑀 ∈ ℕ ∧ (𝑀 · 𝑃) ∈ 𝑆))
2319, 22sylib 218 . . . . . . . . . 10 (𝜑 → (𝑀 ∈ ℕ ∧ (𝑀 · 𝑃) ∈ 𝑆))
2423simprd 495 . . . . . . . . 9 (𝜑 → (𝑀 · 𝑃) ∈ 𝑆)
25114sqlem2 16983 . . . . . . . . 9 ((𝑀 · 𝑃) ∈ 𝑆 ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
2624, 25sylib 218 . . . . . . . 8 (𝜑 → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
2726adantr 480 . . . . . . 7 ((𝜑𝑀 ∈ (ℤ‘2)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
28 simp1l 1196 . . . . . . . . . . . . . 14 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝜑)
2928, 12syl 17 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑁 ∈ ℕ)
3028, 13syl 17 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑃 = ((2 · 𝑁) + 1))
3128, 1syl 17 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑃 ∈ ℙ)
3228, 14syl 17 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → (0...(2 · 𝑁)) ⊆ 𝑆)
33 simp1r 1197 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑀 ∈ (ℤ‘2))
34 simp2ll 1239 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑎 ∈ ℤ)
35 simp2lr 1240 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑏 ∈ ℤ)
36 simp2rl 1241 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑐 ∈ ℤ)
37 simp2rr 1242 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑑 ∈ ℤ)
38 eqid 2735 . . . . . . . . . . . . 13 (((𝑎 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (((𝑎 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
39 eqid 2735 . . . . . . . . . . . . 13 (((𝑏 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (((𝑏 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
40 eqid 2735 . . . . . . . . . . . . 13 (((𝑐 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (((𝑐 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
41 eqid 2735 . . . . . . . . . . . . 13 (((𝑑 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (((𝑑 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
42 eqid 2735 . . . . . . . . . . . . 13 (((((((𝑎 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2) + ((((𝑏 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2)) + (((((𝑐 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2) + ((((𝑑 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2))) / 𝑀) = (((((((𝑎 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2) + ((((𝑏 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2)) + (((((𝑐 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2) + ((((𝑑 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2))) / 𝑀)
43 simp3 1137 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
4411, 29, 30, 31, 32, 7, 6, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 434sqlem17 16995 . . . . . . . . . . . 12 ¬ ((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
4544pm2.21i 119 . . . . . . . . . . 11 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → ¬ 𝑀 ∈ (ℤ‘2))
46453expia 1120 . . . . . . . . . 10 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ))) → ((𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ¬ 𝑀 ∈ (ℤ‘2)))
4746anassrs 467 . . . . . . . . 9 ((((𝜑𝑀 ∈ (ℤ‘2)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → ((𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ¬ 𝑀 ∈ (ℤ‘2)))
4847rexlimdvva 3211 . . . . . . . 8 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ¬ 𝑀 ∈ (ℤ‘2)))
4948rexlimdvva 3211 . . . . . . 7 ((𝜑𝑀 ∈ (ℤ‘2)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ¬ 𝑀 ∈ (ℤ‘2)))
5027, 49mpd 15 . . . . . 6 ((𝜑𝑀 ∈ (ℤ‘2)) → ¬ 𝑀 ∈ (ℤ‘2))
5150pm2.01da 799 . . . . 5 (𝜑 → ¬ 𝑀 ∈ (ℤ‘2))
5223simpld 494 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
53 elnn1uz2 12965 . . . . . . 7 (𝑀 ∈ ℕ ↔ (𝑀 = 1 ∨ 𝑀 ∈ (ℤ‘2)))
5452, 53sylib 218 . . . . . 6 (𝜑 → (𝑀 = 1 ∨ 𝑀 ∈ (ℤ‘2)))
5554ord 864 . . . . 5 (𝜑 → (¬ 𝑀 = 1 → 𝑀 ∈ (ℤ‘2)))
5651, 55mt3d 148 . . . 4 (𝜑𝑀 = 1)
5756, 19eqeltrrd 2840 . . 3 (𝜑 → 1 ∈ 𝑇)
58 oveq1 7438 . . . . . 6 (𝑖 = 1 → (𝑖 · 𝑃) = (1 · 𝑃))
5958eleq1d 2824 . . . . 5 (𝑖 = 1 → ((𝑖 · 𝑃) ∈ 𝑆 ↔ (1 · 𝑃) ∈ 𝑆))
6059, 7elrab2 3698 . . . 4 (1 ∈ 𝑇 ↔ (1 ∈ ℕ ∧ (1 · 𝑃) ∈ 𝑆))
6160simprbi 496 . . 3 (1 ∈ 𝑇 → (1 · 𝑃) ∈ 𝑆)
6257, 61syl 17 . 2 (𝜑 → (1 · 𝑃) ∈ 𝑆)
635, 62eqeltrrd 2840 1 (𝜑𝑃𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  {cab 2712  wne 2938  wrex 3068  {crab 3433  wss 3963  c0 4339   class class class wbr 5148  cfv 6563  (class class class)co 7431  infcinf 9479  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  cz 12611  cuz 12876  ...cfz 13544   mod cmo 13906  cexp 14099  cprime 16705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706  df-gz 16964
This theorem is referenced by:  4sqlem19  16997
  Copyright terms: Public domain W3C validator