MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efrirr Structured version   Visualization version   GIF version

Theorem efrirr 5665
Description: A well-founded class does not belong to itself. (Contributed by NM, 18-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
efrirr ( E Fr 𝐴 → ¬ 𝐴𝐴)

Proof of Theorem efrirr
StepHypRef Expression
1 frirr 5661 . . 3 (( E Fr 𝐴𝐴𝐴) → ¬ 𝐴 E 𝐴)
2 epelg 5585 . . . 4 (𝐴𝐴 → (𝐴 E 𝐴𝐴𝐴))
32adantl 481 . . 3 (( E Fr 𝐴𝐴𝐴) → (𝐴 E 𝐴𝐴𝐴))
41, 3mtbid 324 . 2 (( E Fr 𝐴𝐴𝐴) → ¬ 𝐴𝐴)
54pm2.01da 799 1 ( E Fr 𝐴 → ¬ 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2108   class class class wbr 5143   E cep 5583   Fr wfr 5634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-eprel 5584  df-fr 5637
This theorem is referenced by:  tz7.2  5668  ordirr  6402
  Copyright terms: Public domain W3C validator