![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efrirr | Structured version Visualization version GIF version |
Description: A well-founded class does not belong to itself. (Contributed by NM, 18-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
efrirr | ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frirr 5676 | . . 3 ⊢ (( E Fr 𝐴 ∧ 𝐴 ∈ 𝐴) → ¬ 𝐴 E 𝐴) | |
2 | epelg 5600 | . . . 4 ⊢ (𝐴 ∈ 𝐴 → (𝐴 E 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
3 | 2 | adantl 481 | . . 3 ⊢ (( E Fr 𝐴 ∧ 𝐴 ∈ 𝐴) → (𝐴 E 𝐴 ↔ 𝐴 ∈ 𝐴)) |
4 | 1, 3 | mtbid 324 | . 2 ⊢ (( E Fr 𝐴 ∧ 𝐴 ∈ 𝐴) → ¬ 𝐴 ∈ 𝐴) |
5 | 4 | pm2.01da 798 | 1 ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 E cep 5598 Fr wfr 5649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-eprel 5599 df-fr 5652 |
This theorem is referenced by: tz7.2 5683 ordirr 6413 |
Copyright terms: Public domain | W3C validator |