Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  efrirr Structured version   Visualization version   GIF version

Theorem efrirr 5529
 Description: A well-founded class does not belong to itself. (Contributed by NM, 18-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
efrirr ( E Fr 𝐴 → ¬ 𝐴𝐴)

Proof of Theorem efrirr
StepHypRef Expression
1 frirr 5525 . . 3 (( E Fr 𝐴𝐴𝐴) → ¬ 𝐴 E 𝐴)
2 epelg 5459 . . . 4 (𝐴𝐴 → (𝐴 E 𝐴𝐴𝐴))
32adantl 484 . . 3 (( E Fr 𝐴𝐴𝐴) → (𝐴 E 𝐴𝐴𝐴))
41, 3mtbid 326 . 2 (( E Fr 𝐴𝐴𝐴) → ¬ 𝐴𝐴)
54pm2.01da 797 1 ( E Fr 𝐴 → ¬ 𝐴𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 208   ∧ wa 398   ∈ wcel 2108   class class class wbr 5057   E cep 5457   Fr wfr 5504 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-br 5058  df-opab 5120  df-eprel 5458  df-fr 5507 This theorem is referenced by:  tz7.2  5532  ordirr  6202
 Copyright terms: Public domain W3C validator