Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efrirr | Structured version Visualization version GIF version |
Description: A well-founded class does not belong to itself. (Contributed by NM, 18-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
efrirr | ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frirr 5557 | . . 3 ⊢ (( E Fr 𝐴 ∧ 𝐴 ∈ 𝐴) → ¬ 𝐴 E 𝐴) | |
2 | epelg 5487 | . . . 4 ⊢ (𝐴 ∈ 𝐴 → (𝐴 E 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
3 | 2 | adantl 481 | . . 3 ⊢ (( E Fr 𝐴 ∧ 𝐴 ∈ 𝐴) → (𝐴 E 𝐴 ↔ 𝐴 ∈ 𝐴)) |
4 | 1, 3 | mtbid 323 | . 2 ⊢ (( E Fr 𝐴 ∧ 𝐴 ∈ 𝐴) → ¬ 𝐴 ∈ 𝐴) |
5 | 4 | pm2.01da 795 | 1 ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 E cep 5485 Fr wfr 5532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-eprel 5486 df-fr 5535 |
This theorem is referenced by: tz7.2 5564 ordirr 6269 |
Copyright terms: Public domain | W3C validator |