MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efrirr Structured version   Visualization version   GIF version

Theorem efrirr 5591
Description: A well-founded class does not belong to itself. (Contributed by NM, 18-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
efrirr ( E Fr 𝐴 → ¬ 𝐴𝐴)

Proof of Theorem efrirr
StepHypRef Expression
1 frirr 5587 . . 3 (( E Fr 𝐴𝐴𝐴) → ¬ 𝐴 E 𝐴)
2 epelg 5512 . . . 4 (𝐴𝐴 → (𝐴 E 𝐴𝐴𝐴))
32adantl 481 . . 3 (( E Fr 𝐴𝐴𝐴) → (𝐴 E 𝐴𝐴𝐴))
41, 3mtbid 324 . 2 (( E Fr 𝐴𝐴𝐴) → ¬ 𝐴𝐴)
54pm2.01da 798 1 ( E Fr 𝐴 → ¬ 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2111   class class class wbr 5086   E cep 5510   Fr wfr 5561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-eprel 5511  df-fr 5564
This theorem is referenced by:  tz7.2  5594  ordirr  6319  elirrvALT  9490
  Copyright terms: Public domain W3C validator